Self Studies

Limits and Continuity Test 49

Result Self Studies

Limits and Continuity Test 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let [x] denote the greatest integer less than or equal to x. Then :
    limx0tan(πsin2x)+(xsin)(x[x] )2x2:\underset { x\rightarrow 0 }{ lim } \dfrac { tan\left( \pi { sin }^{ 2 }x \right) +\left( \left| x \right| -sin \right) \left( x\left[ x \right]  \right) ^{ 2 } }{ { x }^{ 2 } } :
  • Question 2
    1 / -0
    limxπ 2 cotxcosx(π2x)3 \underset { x\rightarrow \frac { \pi  }{ 2 }  }{ lim } \frac { cotx-cosx }{ { (\pi -2x) }^{ 3 } }  equals :
    Solution

  • Question 3
    1 / -0
    limn n2(x1n x1n+1 ),x>0\displaystyle\lim _{ n\rightarrow \infty  }{ { n }^{ 2 }\left( { x }^{ \dfrac { 1 }{ n }  }-{ x }^{ \dfrac { 1 }{ n+1 }  } \right) ,x>0 } is equal to 
    Solution

  • Question 4
    1 / -0
    If limx0[1+ax+bx2](2/x)=e3\displaystyle \lim _{ x\rightarrow 0 }[1+ax+bx^{2}]^{(2/x)}=e^{3}, then 
    Solution

  • Question 5
    1 / -0
    If [.] deotes the greatest integer function then
    limxπ/2[xπ 2 cosx ]\begin{matrix} lim \\ x\rightarrow \pi /2 \end{matrix}\left[ \frac { x-\frac { \pi  }{ 2 }  }{ cosx }  \right] is equal to
    Solution

  • Question 6
    1 / -0
    xlima(sinxa2tanπx2a ) \displaystyle x\xrightarrow { lim } a\left(\sin\frac{x-a}{2}\tan\frac{\pi x}{2a}  \right) 
    Solution

  • Question 7
    1 / -0
    limx01+sinx 31sinx 3 x =\lim _{ x\rightarrow 0 }{ \frac { \sqrt [ 3 ]{ 1+\sin { x }  } -\sqrt [ 3 ]{ 1-\sin { x }  }  }{ x }  } =
    Solution

  • Question 8
    1 / -0
    limx0sin(6x2)Incos(2x2x)=\underset { x\rightarrow 0 }{ lim } \frac { sin({ 6x }^{ 2 }) }{ Incos({ 2x }^{ 2 }-x) } =
    Solution

  • Question 9
    1 / -0
    limx (3x4+2x2)sin(1x)+x3+5x3+x2+x+1=\underset { x\rightarrow -\infty  }{ lim } \frac { ({ 3x }^{ 4 }+{ 2x }^{ 2 })sin(\frac { 1 }{ x } )+{ |x| }^{ 3 }+5 }{ { |x }|^{ 3 }+{ |x| }^{ 2 }+|x|+1 } =
  • Question 10
    1 / -0
    The value of limx0(sinx)1x+(1+x)(sinx))=0\displaystyle \lim_{x \rightarrow 0} (\sin x)^{\dfrac{1}{x}}+(1+x)^{(\sin x)})=0, where x>0x > 0, is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now