Self Studies

Limits and Continuity Test 5

Result Self Studies

Limits and Continuity Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate: $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$
    Solution
    Given,

    $$\lim_{x\rightarrow 0}\dfrac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$

    $$\sec x=\dfrac{1}{\cos x}$$

    $$=\displaystyle\lim_{x\rightarrow 0}\dfrac{\dfrac{1}{\cos 4x}-\dfrac{1}{\cos 2x}}{\dfrac{1}{\cos 3x}-\dfrac{1}{\cos x}}$$

    $$=\lim_{x\rightarrow 0}\dfrac{\cos 2x-\cos 4x}{\cos x-\cos 3x}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    $$=\lim_{x\rightarrow 0}\dfrac{-2\sin 3x \sin (-x)}{-2\sin (2x)\sin (-x)}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    $$=\lim_{x\rightarrow 0}\dfrac{\dfrac{\sin 3x}{3x}\times 3x}{\dfrac{\sin 2x}{2x}\times 2x}\dfrac{\cos 3x\cos x}{\cos 4x\cos 2x}$$

    as $$\cos 0=1$$ and $$\lim_{x\rightarrow 0}\dfrac{\sin x}{x}=1$$

    $$=\dfrac{3x}{2x}=\dfrac{3}{2}$$
  • Question 2
    1 / -0

    $$\displaystyle \lim_{x \rightarrow\frac{\pi}{2}}\displaystyle \dfrac{cosecx-\cot x}{x}$$=
    Solution
    $$\displaystyle \lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { \csc { x } -\cot  x }{ x } $$
    $$\displaystyle =\lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { 1-\cos  x }{ x\sin { x }  } $$
    $$\displaystyle =\dfrac{2}{\pi}$$
  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \frac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \dfrac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$
    $$\displaystyle =\lim _{ x\rightarrow \dfrac { \pi  }{ 4 }  } \dfrac { \sec  x.\dfrac { \tan  (4x-\pi ) }{ (4x-\pi ) }  }{ \dfrac { \sin  (4x-\pi ) }{ (4x-\pi ) }  }$$
    $$ =\sqrt { 2 } $$
  • Question 4
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=2\sqrt{3}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\dfrac{\sqrt{3}}{2}\sin x-\dfrac{1}{2}\cos x}{6x-\pi }$$
    $$=\displaystyle \dfrac{2\sqrt{3}}{6}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\cos\dfrac{\pi}{6}\sin x-\sin\dfrac{\pi}{6}\cos x}{x-\dfrac{\pi}{6} }$$
    $$=\displaystyle \dfrac{1}{\sqrt{3}}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\sin \left(x-\dfrac{\pi}{6}\right)}{\left(x-\dfrac{\pi}{6} \right)}=\dfrac{1}{\sqrt{3}}$$
  • Question 5
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{a^{x}-b^{x}}{{x}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{a^{x}-b^{x}}{{x}}$$

    $$=\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{a^{x}-1-b^{x}+1}{{x}}$$
    $$=\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(a^{x}-1)-(b^{x}-1)}{{x}}$$
    $$=\log a - \log b$$ ......... Using formula
    $$=\log\left(\dfrac{a}{b}\right)$$
    Hence, $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{a^{x}-b^{x}}{{x}}=\log\left(\dfrac{a}{b}\right)$$
  • Question 6
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{tan x^{0}}{x}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac{tan x^{0}}{x}$$
    $$\displaystyle={ \dfrac { \pi  }{ 180 }  }\lim _{ x\rightarrow 0 } \dfrac { \tan { (\dfrac { \pi  }{ 180 } x) }  }{ { (\dfrac { \pi  }{ 180 } ) }x } $$
    $$\displaystyle={ \dfrac { \pi  }{ 180 }  }$$
  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$
    $$\displaystyle =\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ x }  }{ x^{ 3 } }$$
    $$\displaystyle =\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ (\frac { \pi  }{ 180 } x) }  }{ x^{ 3 } } $$
    $$\displaystyle ={ (\frac { \pi  }{ 180 } ) }^{ 3 }\lim _{ x\rightarrow 0 } \frac { 4\sin ^{ 3 }{ (\frac { \pi  }{ 180 } x) }  }{ x^{ 3 }{ (\frac { \pi  }{ 180 } ) }^{ 3 } } $$
    $$\displaystyle =4{ (\frac { \pi  }{ 180 } ) }^{ 3 }$$
  • Question 8
    1 / -0
    Solve:
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\tan x-\tan 3x}{2x^{3}}$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{3\tan x-\tan 3x}{2x^{3}}$$

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{3(x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}+......)-(3x+\dfrac{(3x)^3}{3}+\dfrac{2(3x)^5}{15}+....)}{2x^{3}}=\dfrac{1-9}{2}=-4$$
  • Question 9
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \displaystyle \frac{\pi }{2}}\displaystyle \frac{1-\sin\theta}{\cos\theta\left(\dfrac{\pi}{2}-{\theta}\right)}=$$
    Solution
    $$Put\ \theta = \dfrac{\pi }{2}-\phi $$

    $$\begin{matrix}Lim\\\phi \rightarrow 0 \end{matrix}\ \dfrac{1-cos\phi}{\dfrac{sin\phi}{\phi}\phi ^{2}}=\dfrac{1}{2}$$
  • Question 10
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}(\frac{\sin x-x}{x})(\sin\frac{1}{x})$$ is:
    Solution
    $$sin x = x -\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}....(1)$$
    $$sin\ x-x =-\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}-\dfrac{x^{7}}{7!}$$
    $$\dfrac{sin\ x-x}{x} =-\dfrac{x^{2}}{3!}+\dfrac{x^{4}}{5!}-\dfrac{x^{6}}{7!}....=0\ (as\ x\ found\ to\ 0)$$
    sin$$(\dfrac{1}{x})$$ is an oscillatory function means same finite no.
    $$0\times finite\ no.=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now