Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$\begin{matrix} lim \\ x\rightarrow 0 \end{matrix}$$ $$[\frac{x}{sinx}],$$ where [.] represents the greatest inter function , is 

  • Question 2
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \left( \dfrac { 1+tanx }{ 1+sinx }  \right) ^{ cosecx }$$ is equal to

  • Question 3
    1 / -0

    The value of $$\displaystyle \lim_{x\rightarrow 0}\left(\dfrac {1}{x^{2}}-\cot x\right)$$ equals

  • Question 4
    1 / -0

    $$\underset { \theta \longrightarrow 0 }{ Lt } \dfrac { 3tan\theta -tan3\theta  }{ { 2\theta  }^{ 3 } } =$$

  • Question 5
    1 / -0

    $$\underset { x\rightarrow 0 }{ Lt\quad  } \frac { sec\quad x-1 }{ { \left( sec\quad x+\quad 1 \right)  }^{ 2 } } =$$

  • Question 6
    1 / -0

    Value of $$\underset { x\rightarrow 0 }{ lim } \dfrac { \sqrt [ 3 ]{ 1+\tan { x }  } -\sqrt [ 3 ]{ 1-\tan { x }  }  }{ x } $$ is

  • Question 7
    1 / -0

    If $$\begin{matrix} lim\quad  \\ x\rightarrow 0 \end{matrix}\dfrac { x\left( 1+acosx \right) -bsinx }{ { x }^{ 3 } } =1$$ then value of a + b 

  • Question 8
    1 / -0

    $$\underset { x\rightarrow 0 }{ Lt } (1+sin\quad x)^{ cot\quad x }=$$ 

  • Question 9
    1 / -0

    Value of $$\underset { x\rightarrow \dfrac { \pi  }{ 2 }  }{ lim } \tan { x } .\ell nsin{ x }$$ is 

  • Question 10
    1 / -0

    For $$a > 1$$ then $$\displaystyle\lim_{x\rightarrow \infty}\dfrac{a^x-a^{-x}}{a^x+a^{-x}}=?$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now