Self Studies

Limits and Continuity Test 55

Result Self Studies

Limits and Continuity Test 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \frac { 1 }{ { x }^{ 8 } } [1-\cos { (\frac { { x }^{ 2 } }{ 2 } ) } ] } [1-\cos { (\frac { { x }^{ 2 } }{ 4 } ) } ]$$
    Solution

  • Question 2
    1 / -0
    $$\underset { x\rightarrow a }{ lim } \left( \sin { \dfrac { x-a }{ 2 } \tan { \dfrac { \pi x }{ 2a }  }  }  \right)$$
    Solution

  • Question 3
    1 / -0
    The value of $$\mathop {{\text{Limit}}}\limits_{x \to 0} \frac{{\cos \left( {\sin x} \right) - \cos x}}{{{x^4}}}$$ is equal to 
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { 100\tan { x } .\sin { x }  }{ { x }^{ 2 } }  \right]  } $$ where $$[.]$$ represents greatest integer function is 
    Solution

  • Question 5
    1 / -0
    The value of $$ \lim _ { x \rightarrow 0 } \dfrac { \sin^3 ( \sqrt { x } ) \ln ( 1 + 3 x ) } { \left( \tan ^ { - 1 } \sqrt { x } \right) ^ { 2 } \left( e ^ { 5 ( \sqrt { x } ) } - 1 \right)x } $$ is equal to
  • Question 6
    1 / -0
    The value of $$\lim _{ x\rightarrow \frac { \pi  }{ 2 }  }{ \tan ^{ 2 }{ \left( \sqrt { 2\sin ^{ 2 }{ x } +3\sin { x } +4 } -\sqrt { \sin ^{ 2 }{ x } +6\sin { x } +2 }  \right)  }  } $$ is equal to
    Solution

  • Question 7
    1 / -0
    $$ \lim _{x \rightarrow 0}\left(\frac{e^{x}+e^{-x}-2}{x^{2}}\right)^{1 / x^{2}} $$
    Solution

  • Question 8
    1 / -0
    $$\mathop {Lt}\limits_{x \to 1} {\left( {1 - x} \right)^{\tan \pi x}} = $$
    Solution

  • Question 9
    1 / -0
    $$\begin{matrix} lim \\ x\rightarrow a \end{matrix}(2-\frac { a }{ x } ){  }^{ tan(\frac { \pi x }{ 2a } ) }$$ is equal to 
  • Question 10
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow 0 }\log_{\cos{2x}}{\cos{x}}+\log_{\cos{2x}}{\cos{2x}}$$ equals 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now