Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$\lim _{ x\rightarrow 0 }{ \left( { \left( \sin { x }  \right)  }^{ 1/x }+{ \left( \dfrac { 1 }{ x }  \right)  }^{ \sin { x }  } \right)  } $$

  • Question 2
    1 / -0

    Find:
    $$\underset { x\rightarrow 0 }{ lim } \quad \dfrac { 1-cos^{ 3 }x }{ xsin2x } =\quad $$

  • Question 3
    1 / -0

    $$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { x }  }{ { { x\log { (1+x) }  } } }  } $$ =

  • Question 4
    1 / -0

    The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{\sec 5x - \sec 3x}}{{\sec 3x - \sec x}}$$

  • Question 5
    1 / -0

    If $$\alpha$$ and $$\beta$$ be the roots of the equation $$ax^{2} + bx + c = 0$$ then $$\displaystyle \lim_{x\rightarrow \dfrac {1}{\alpha}} \sqrt {\dfrac {1 - \cos^{2} (cx^{2} + bx + a)}{4(1 - \alpha x)^{2}}}$$

  • Question 6
    1 / -0

    The value of $$\begin{matrix} lim \\ x\rightarrow \frac { 1 }{ \sqrt { 2 }  }  \end{matrix}\dfrac { x-cos\left( { sin }^{ -1 }x \right)  }{ 1-tan\left( { sin }^{ -1 }x \right)  } is$$

  • Question 7
    1 / -0

    $$\begin{matrix} lim \\ x\rightarrow 0 \end{matrix}\frac { xcot(4x) }{ { sin }^{ 2 }x{ cot }^{ 2 }\left( 2x \right)  } $$ is equal to 

  • Question 8
    1 / -0

    the value of $$\underset { x\longrightarrow \infty  }{ lim } \frac { { X }^{ 4 }sin\left( \frac { 1 }{ x }  \right) +{ x }^{ 3 } }{ 1+\left| x \right| ^{ 3 } } $$

  • Question 9
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \dfrac { sec4x-sec2x }{ sec3x-secx } =$$

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0} \dfrac {\sin 2x + 3x}{2x + \sin 3x}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now