Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    f(X)=|x|+|x-1| is continuous at 

  • Question 2
    1 / -0

    The value of $$\underset{x\rightarrow 1}{lim}(2-x)^{tan\left(\dfrac{\pi x}{2}\right)}$$ is

  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin x - x}{x^{3}}$$ is equal to

  • Question 4
    1 / -0

    $$\underset{x \rightarrow 1} {lim}\dfrac{x^2-1}{\sin^2x+\cos x\cos (x+2)-\cos^2(x+1)}$$ is-

  • Question 5
    1 / -0

    $$\lim_{x\rightarrow 1}\frac{1-x^{-2/3}}{1-x^{-1/3}}$$

  • Question 6
    1 / -0

    $$\overset {lim}{x \rightarrow \pi/2} \dfrac{\sin(x \ cos x)}{cos(x\, \ sin x)}$$ is equal to

  • Question 7
    1 / -0

    $$\displaystyle \lim _{x \rightarrow 1}\left(\dfrac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\dfrac{1-\cos (x+1)}{(x+1)^{2}}} $$ is equal to:

  • Question 8
    1 / -0

     $$ \displaystyle \lim _{x \rightarrow 0}\left(\dfrac{1^{x}+2^{x}+3^{x}+\cdots+n^{x}}{n}\right)^{1 / x} $$ is equal to

  • Question 9
    1 / -0

    If $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{n}-\sin x^{n}}{x-\sin ^{n} x} $$ is non-zero finite, then $$ n $$ must be equal

  • Question 10
    1 / -0

    $$\displaystyle \lim _{x \rightarrow \infty} \dfrac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}} $$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now