Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$=

  • Question 2
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$=

  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}=$$

  • Question 4
    1 / -0

    $$ \displaystyle f(x)=\left\{ \begin{matrix} \dfrac { 3 }{ { x }^{ 2 } } \sin { 2{ x }^{ 2 } } ,\; x<0 \\ \dfrac { { x }^{ 2 }+2x+C }{ 1-3{ x }^{ 2 } } ,\; x\ge 0,\; x\neq \frac { 1 }{ \sqrt { 3 }  }  \\ 0,\; x=\frac { 1 }{ \sqrt { 3 }  }  \end{matrix} \right. $$
    $$\displaystyle \lim_{x\rightarrow 0^{+}}f(x)=$$

  • Question 5
    1 / -0

    Let $$f(x)=\begin{cases}x^{2}-1,0 < x < 2\\2x+3,2 \leq x < 3\end{cases},$$ 

    The quadratic equation whose roots are $$\displaystyle \lim_{x\rightarrow 2^{-}}f(x)$$ and $$\displaystyle \lim_{x\rightarrow 2^{+}}f(x)$$ is

  • Question 6
    1 / -0

    The value of $$\sqrt{e}$$e upto four decimal places is?

  • Question 7
    1 / -0

    If $$f(x) = \displaystyle \frac {x^2+6x}{\sin x}$$ , then $$\displaystyle \lim_{x\rightarrow 0^{-}}f(x)=$$

  • Question 8
    1 / -0


    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\log(1+ax)-\log(1+bx)}{x}$$=

  • Question 9
    1 / -0

    Let $$f$$ be a continuous function on [1,3]. lf $$f$$ takes only rational values for all $$x$$ and $$f(2)=10$$ then $$f(1.5)$$ is equal to

  • Question 10
    1 / -0

    $$\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { 3\sin(2{ x }^{ 2 }) }{ { x }^{ 2 } }  } =A$$

    then the value of $$A$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now