Self Studies

Limits and Continuity Test 6

Result Self Studies

Limits and Continuity Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$
    $$=\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{1-\tan x}{(\frac{\pi}{4}-x)(1+\tan x)}$$.................(dividing the num and deno by cosx)
    $$=\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\tan\left(\frac{\pi}{4}-x\right) }{(\frac{\pi}{4}-x)} = \lim_{h\to 0}\frac{\tan h}{h} = 1$$
  • Question 2
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$
    $$\displaystyle  =\lim _{ h\rightarrow 0 } \dfrac { 1-\sin  (\dfrac { \pi  }{ 2 } -h) }{ (\pi -2(\dfrac { \pi  }{ 2 } -h))^{ 2 } } $$......(x-->h-pi/2)
    $$\displaystyle =\lim _{ h\rightarrow 0 } \dfrac { 1-\cos { h }  }{ 4h^{ 2 } }$$

    $$\displaystyle =\dfrac { 1 }{ 8 } $$
  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}$$

    $$=\displaystyle \lim_{x\rightarrow \infty }\frac{\displaystyle 1+\frac{\sin x}{x}}{\displaystyle 1+ \frac{\cos x}{x}}$$

    $$=\displaystyle \frac{\displaystyle 1+\frac{\text{Any finite number between -1 and 1}}{\infty}}{\displaystyle 1+ \frac{\text{Any finite number between -1 and 1}}{\infty}}=\frac{1+0}{1+0}=1$$
  • Question 4
    1 / -0
    $$ \displaystyle f(x)=\left\{ \begin{matrix} \dfrac { 3 }{ { x }^{ 2 } } \sin { 2{ x }^{ 2 } } ,\; x<0 \\ \dfrac { { x }^{ 2 }+2x+C }{ 1-3{ x }^{ 2 } } ,\; x\ge 0,\; x\neq \frac { 1 }{ \sqrt { 3 }  }  \\ 0,\; x=\frac { 1 }{ \sqrt { 3 }  }  \end{matrix} \right. $$
    $$\displaystyle \lim_{x\rightarrow 0^{+}}f(x)=$$
    Solution

  • Question 5
    1 / -0
    Let $$f(x)=\begin{cases}x^{2}-1,0 < x < 2\\2x+3,2 \leq x < 3\end{cases},$$ 
    The quadratic equation whose roots are $$\displaystyle \lim_{x\rightarrow 2^{-}}f(x)$$ and $$\displaystyle \lim_{x\rightarrow 2^{+}}f(x)$$ is
    Solution
    For $$0 < x < 2$$,
    $$f(x) =  {x}^{2} - 1 $$
    $$\lim_{ x \rightarrow {2}^{-}}   f(x) = 3 $$
    For, $$2 < x < 3$$ 
    $$f(x) = 2x + 3$$
    $$\lim_{ x \rightarrow {2}^{+}}   f(x) = 7 $$
    Thus the equation with roots, 3 and 7 is
    $$ {x}^{2} - 10x + 21 = 0 $$
  • Question 6
    1 / -0
    The value of $$\sqrt{e}$$e upto four decimal places is?
    Solution
    $$(e)^{\frac {1}{2}}=1+\dfrac {1}{2}+\dfrac {(\dfrac {1}{2})^2}{2!}+\dfrac {(\dfrac {1}{2})^3}{3!}+\dfrac {(\dfrac {1}{2})^4}{4!}$$
    $$=1+0\cdot 5+0\cdot 125+0\cdot 02083+0\cdot 00260$$
    $$=1\cdot 6484$$
  • Question 7
    1 / -0
    If $$f(x) = \displaystyle \frac {x^2+6x}{\sin x}$$ , then $$\displaystyle \lim_{x\rightarrow 0^{-}}f(x)=$$
    Solution
    $$\lim_{x\rightarrow  0 }^{ - }f\left( x \right) =\dfrac { { x }^{ 2 }+6x }{ \sin x } \\= \lim_{ h\rightarrow 0 } f\left( h \right) $$
    $$=\dfrac { { h }^{ 2 }+6(0-h) }{ \sin(0-h) }= \lim_{h\rightarrow  0 }f\left( h \right) =\dfrac { { h }-6 }{ -\sin(h)/h } = \dfrac { -6 }{ -1 } =6$$
    Hence, the answer is "C".
  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\log(1+ax)-\log(1+bx)}{x}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\log(1+ax)-\log(1+bx)}{x}$$

    $$=\displaystyle a.\lim_{x\to 0}\frac{\log(1+ax)}{ax}-b.\lim_{x\to 0}\frac{\log(1+bx)}{bx}=a-b$$
  • Question 9
    1 / -0
    Let $$f$$ be a continuous function on [1,3]. lf $$f$$ takes only rational values for all $$x$$ and $$f(2)=10$$ then $$f(1.5)$$ is equal to
    Solution
    Since $$f$$ is continuous, so it must take all real values between $$f\left(1\right)$$ and $$f\left(3\right)$$.
    But since $$f$$ takes only rational values so $$f$$ must be a constant function.
    Hence $$f\left(1.5\right)=f\left(2\right)=10$$
  • Question 10
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { 3\sin(2{ x }^{ 2 }) }{ { x }^{ 2 } }  } =A$$
    then the value of $$A$$ is
    Solution
    $$\displaystyle \lim_{x\rightarrow { 0^- }} \dfrac { 3\sin({ 2x }^{ 2 }) }{ { x }^{ 2 } } =\lim_{x\rightarrow { 0^- }}\dfrac { 2*3\sin({ 2x }^{ 2 }) }{ { 2x }^{ 2 } } = 6$$

    Hence, answer is option $$C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now