Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate: $$\displaystyle \underset{x\rightarrow 0}{\lim}\ \ \frac{\sin3x^{2}}{\cos(2x^{2}-x)}$$

  • Question 2
    1 / -0

    lf $$f(x)=\displaystyle \begin{cases}\dfrac{a^{2[x]+\{x\}}-1}{2[x]+\{x\}};x\neq 0 \\ \log a;x=0 \end{cases}$$ where $$[.\ ]$$ and $$\{.\ \}$$ denote integral and fractional part respectively, then

  • Question 3
    1 / -0


     lf $$\displaystyle { f }({ x })=\sqrt { \frac { { x }-\sin ^{ 2 }{ x }  }{ { x }+\cos { x }  }  } $$,then $$\displaystyle \lim _{ x\rightarrow \infty  } f(x)$$=

  • Question 4
    1 / -0

    The value of $$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x }  \right)  }  }{ { x }^{ 2 } }  } $$ is

  • Question 5
    1 / -0

    Let $$f(x)=\cos2x.\cot\left (\displaystyle  \frac{\pi }{4}-x \right )$$ If $$f$$ is continuous at $$x=\displaystyle \frac{\pi}{4}$$ then the value of $$f(\displaystyle \frac{\pi}{4})$$ is equal to

  • Question 6
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \infty }(\sin\sqrt{x+1}-\sin\sqrt{x})=$$

  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=$$

  • Question 8
    1 / -0


     $$\displaystyle \lim_{x\rightarrow\infty}\frac{\sin^{4}x-\sin^{2}x+1}{\cos^{4}x-\cos^{2}x+1}$$ is equal to

  • Question 9
    1 / -0

    $$f(x)=\left\{\begin{matrix}[x]+[-x], & \\  \lambda ,& \end{matrix}\right.\begin{matrix}x\neq 2 & \\  x=2& \end{matrix},$$ then f(x) is continuous at $$x=2$$ provided $$\lambda $$ is:

  • Question 10
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now