Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$N$$ be the set of natural numbers and two functions $$f$$ and $$g$$ be defined as $$f,g : N\to N$$ such that :
    $$f (n)= \begin{cases}\dfrac{n+1}{2}& \text{if n is odd}\\ \dfrac{n}{2} & \text{in n is even} \end{cases}$$
    and $$g(n) = n - (-1)^n$$. The fog is:

  • Question 2
    1 / -0

    If $$g(x)=x^2+x-1$$ and 
    $$(gof)(x)=4x^2-10x+5$$, then
    $$f\left(\dfrac{5}{4}\right)$$ is equal to:

  • Question 3
    1 / -0

     Domain of definition of the function $$\displaystyle{ f }({ x })=\sqrt { \sin ^{ -1 } (2{ x })+\frac { \pi  }{ 6 }  } $$ for real valued $$x$$, is

  • Question 4
    1 / -0

    A constant function $$f:A\rightarrow B$$ will be one-one if

  • Question 5
    1 / -0

    A constant function $$f:A\rightarrow B $$ will be onto if

  • Question 6
    1 / -0

    If $$f:\mathbb{N} \rightarrow \mathbb{N}$$ and $$f(x) = x^{2}$$ then the function is

  • Question 7
    1 / -0

    $$f(x)=1$$, if $$x$$ is rational and $$f(x)=0$$, if $$x$$ is irrational
    then  $$(fof)  (\sqrt{5})=$$

  • Question 8
    1 / -0

    The domain of $$f(x) = x!$$  is

  • Question 9
    1 / -0

    If $$f(x) = 3x + 2, g(x) = x^2 + 1$$, then the value of $$(fog) (x^2 +1)$$ is

  • Question 10
    1 / -0

    If $$f:A\rightarrow B $$ is surjective then

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now