Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The function $$\displaystyle f(x)=\sqrt{e^{  \cos^{-1}(\log_{4}x^{2})}}$$ is real valued. It is defined if 

  • Question 2
    1 / -0

    The domain of function $$\displaystyle y=\log_{3}(5+4x-x^{2})$$ is 

  • Question 3
    1 / -0

    The domain of the function $$\displaystyle f(x)=\sin^{-1}(x+[x]),$$ where $$[\cdot]$$ denotes the greatest integer function is 

  • Question 4
    1 / -0

    The domain of the function $$\displaystyle f(x)=\log_{e}(x-[x]),$$ where $$[x]$$ denotes the greatest integer function, is 

  • Question 5
    1 / -0

    Let $$\displaystyle f(x)=\log_{x^{2}}25$$ and $$g(x)=\log_{x}5$$, then $$f(x)=g(x)$$ holds for $$x$$ belonging to 

  • Question 6
    1 / -0

    Let $$\displaystyle f:(-1,1)\rightarrow B$$ be a function defined by $$\displaystyle f(x)=\tan^{-1}\dfrac{2x}{1-x^{2}}$$. Then $$f$$ is both one-one and onto function when $$B$$ is in the interval 

  • Question 7
    1 / -0

    The composite mapping $$fog$$ of the map $$f: R\rightarrow R,f(x)=\sin x$$ and $$g: R\rightarrow R, g(x)=x^2$$ is

  • Question 8
    1 / -0

    If $$\displaystyle \left [ x+\left [ x \right ] \right ]\leq 2$$ where $$\displaystyle \left [ x \right ]$$ denotes the greatest integer $$\displaystyle \leq x,$$ then $$x$$ lies in the interval,

  • Question 9
    1 / -0

    Let $$ f:R \rightarrow R$$ and $$g:R \rightarrow R$$ be defined by $$f(x)=x^2+2x-3,g(x)=3x-4$$ then $$(gof) (x)=$$

  • Question 10
    1 / -0

    If $$f(x)=ax+b$$ and $$g(x)=cx+d$$, then $$f(g(x))=g(f(x))$$ implies

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now