Self Studies

Functions Test 13

Result Self Studies

Functions Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$\displaystyle f(x)=\sqrt{e^{  \cos^{-1}(\log_{4}x^{2})}}$$ is real valued. It is defined if 
    Solution
    $$\displaystyle f(x)=\sqrt{e^{ \cos^{-1}(\log_{4}x^{2})}}$$
    For $$f(x)$$ to be defined $$x^2> 0 \Rightarrow x \neq 0$$
    and $$-1\leq \log_4x^2 \leq 1\Rightarrow \cfrac{1}{4}\leq x^2\leq 4\Rightarrow \displaystyle x\:\in\:\left [-2 ,\frac{-1}{2} \right ]\cup \left [ \frac{1}{2},2 \right ]$$
    Hence we get required domain as $$\displaystyle x\:\in\:\left [-2 ,\frac{-1}{2} \right ]\cup \left [ \frac{1}{2},2 \right ]$$
  • Question 2
    1 / -0
    The domain of function $$\displaystyle y=\log_{3}(5+4x-x^{2})$$ is 
    Solution
    $$\displaystyle y=\log_{3}(5+4x-x^{2})$$

    $$\therefore 5+4x-x^2>0$$

    $$x^2-4x-5<0$$

    $$(x-5)(x+1)<0$$

    $$x<5$$ and $$x>-1$$

    $$x\in(-1,5)$$
  • Question 3
    1 / -0
    The domain of the function $$\displaystyle f(x)=\sin^{-1}(x+[x]),$$ where $$[\cdot]$$ denotes the greatest integer function is 
    Solution
    We know that the range of $$\sin^{-1}$$ is $$\left[\dfrac{-\pi}{2},\dfrac{\pi}{2}\right]$$ and domain is $$[-1,1]$$

    Now in $$f(x)=\sin(x+[x])$$

    The input should be in the domain $$[-1,1]$$

    $$x+[x]\geq-1$$

    $$\Rightarrow x\geq0$$

    and $$x+[x]\leq1$$

    $$\Rightarrow x\leq1$$

    However, $$[x]$$ is discontinuous at $$x=1$$

    Hence domain, of $$f(x)=\sin^{-1}(x+[x])$$ is $$[0,1)$$
  • Question 4
    1 / -0
    The domain of the function $$\displaystyle f(x)=\log_{e}(x-[x]),$$ where $$[x]$$ denotes the greatest integer function, is 
    Solution
    For the function to be defined the argument of the logarithm must be greater than zero. 

    $$\therefore x-[x]>0$$

    $$x-[x]=\{ x \}$$ where $$\{\cdot\}$$ denotes the fractional part

    $$\therefore \{x\}>0$$

    This is always true unless $$x$$ is an integer.

    Therefore, answer is B
  • Question 5
    1 / -0
    Let $$\displaystyle f(x)=\log_{x^{2}}25$$ and $$g(x)=\log_{x}5$$, then $$f(x)=g(x)$$ holds for $$x$$ belonging to 
    Solution
    $$f(x)=log_{x^{2}}(25)$$

    $$=\dfrac{log(25)}{logx^{2}}$$ ...$$(log(x)\neq 0),x>0$$

    $$=\dfrac{2log5}{2logx}$$

    $$=log_{x}(5)$$
    $$=g(x)$$

    Since $$log(x)\neq 0$$ 
    $$x\neq 1$$
    Also input of log cannot be negative.
    Hence $$x>0$$
    Therefore the solution set for which f(x) is equal to g(x) is 
    $$R^{+}-\{1\}$$

    $$=(0,1)\cup(1,\infty)$$.
  • Question 6
    1 / -0
    Let $$\displaystyle f:(-1,1)\rightarrow B$$ be a function defined by $$\displaystyle f(x)=\tan^{-1}\dfrac{2x}{1-x^{2}}$$. Then $$f$$ is both one-one and onto function when $$B$$ is in the interval 
    Solution

  • Question 7
    1 / -0
    The composite mapping $$fog$$ of the map $$f: R\rightarrow R,f(x)=\sin x$$ and $$g: R\rightarrow R, g(x)=x^2$$ is
    Solution
    Composite mapping will be $$f(g(x))$$

    $$=f(x^2)$$

    $$=\sin(x^2)$$

    Hence option $$'C'$$ is the answer.
  • Question 8
    1 / -0
    If $$\displaystyle \left [ x+\left [ x \right ] \right ]\leq 2$$ where $$\displaystyle \left [ x \right ]$$ denotes the greatest integer $$\displaystyle \leq x,$$ then $$x$$ lies in the interval,
    Solution
    $$\displaystyle \left [ x+\left [ x \right ] \right ]\leq 2$$

    $$\Rightarrow \displaystyle  x+\left [ x \right ] < 3$$

    We know $$x = [x]+\{x\}$$,  where $$0 \leq \{x\} <1$$

    $$\Rightarrow \displaystyle  \{x\}+2\left [ x \right ] < 3\Rightarrow 2[x]< 3-\{x\}$$

    $$\Rightarrow 2[x]< 3\Rightarrow [x] < 1.5\Rightarrow x < 2$$
  • Question 9
    1 / -0
    Let $$ f:R \rightarrow R$$ and $$g:R \rightarrow R$$ be defined by $$f(x)=x^2+2x-3,g(x)=3x-4$$ then $$(gof) (x)=$$
    Solution
    Given that, $$f(x)=x^2+2x-3$$ and $$g(x)=3x-4$$

    $$(gof) (x)=g\left(f(x)\right)$$

                    $$=3(x^2+2x-3)-4$$

    $$(gof) (x)=3x^2+6x-13$$

    Hence, option A.
  • Question 10
    1 / -0
    If $$f(x)=ax+b$$ and $$g(x)=cx+d$$, then $$f(g(x))=g(f(x))$$ implies
    Solution
    $$f(g(x))=a(cx+d)+b$$

    $$=acx+ad+b$$...(i)

    $$g(f(x))=c(ax+b)+d$$

    $$=ac(x)+bc+d$$ ...(ii)

    $$f(g(x))=g(f(x))$$

    From (i) and (ii)

    $$ac(x)+bc+d=acx+ad+b$$

    $$cb+d=ad+b$$

    $$g(b)=f(d)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now