Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle f(x)=\frac{1}{1-x},x\neq 0,1$$ then the graph of the function $$\displaystyle y=f\left \{ f(f(x)) \right \},x> 1,$$ is

  • Question 2
    1 / -0

    If $$f$$ and $$g$$ are two functions such that  $$\displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right )$$ for all $$x$$. Then $$f $$ and $$g$$ may be defined as

  • Question 3
    1 / -0

    If $$\displaystyle f(x)=x^{n},n\in N$$ and $$(gof)(x)=ng(x)$$ then $$g(x)$$ can be 

  • Question 4
    1 / -0

    The domain of the function $$\displaystyle f\left ( x \right )= \sqrt{\sin ^{-1}\left ( 2x \right )+\frac{\pi }{6}}$$ for real $$x$$, is

  • Question 5
    1 / -0

    If $$\displaystyle f\left ( x \right )=\left\{\begin{matrix}
    x^{2}         x \geq 0\\
    x              x < 0
    \end{matrix}\right.$$
    then $$\displaystyle (f o f)(x)$$ is given by

  • Question 6
    1 / -0

    Let $$\displaystyle g(x)=1+x-[x]$$ and $$\displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right.$$ Then for all  $$\displaystyle x, f\left \{ g\left ( x \right ) \right \}$$ is equal to 

  • Question 7
    1 / -0

    Let $$\displaystyle f(x)=\frac{ax}{x+1}$$, where $$\displaystyle x\neq -1$$. Then for what value of $$\displaystyle a$$ is $$\displaystyle f( f(x))=x$$ always true

  • Question 8
    1 / -0

    If $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$; $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$ then $$(fog)y$$ is equal to

  • Question 9
    1 / -0

    If $$\displaystyle f(x)= (x-1)+(x+1)$$ and
    $$\displaystyle g(x)= f\left \{ f(x) \right \}$$ then $$\displaystyle {g}'(3)$$

  • Question 10
    1 / -0

    Let f(x)=tan x, x$$\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$$ and $$\displaystyle g\left (x  \right )=\sqrt{1-x^{2}}$$ Determine $$g o f(1)$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now