Self Studies

Functions Test 19

Result Self Studies

Functions Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R, g(x) = x^2 + 1 $$ then $$(fog)(3)$$ is equal to
    Solution
    Given,
     $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R,g(x) = x^2 + 1 $$

    $$g(3)=3^2+1=10$$

    $$f(10)=(10+1)^2=121$$

    $$\therefore fog(3)=f\left(g(3)\right)=f(10)=121$$

    Hence, option A.
  • Question 2
    1 / -0
    If $$f(x) = \sqrt{| x-1|}$$ and $$g(x) = \sin x$$, then $$(fog) (x)$$ equals
    Solution
    $$\displaystyle fog\left( x \right) =f\left( g\left( x \right)  \right) =\sqrt { \left| \sin { x } -1 \right|  } $$

    $$=\sqrt { \left| 1-\cos { \left( \dfrac { \pi  }{ 2 } -x \right)  }  \right|  } =\sqrt { 2 } \left| \sin { \left( \dfrac { \pi  }{ 4 } -\dfrac { x }{ 2 }  \right)  }  \right| =\left| \sin { \dfrac { x }{ 2 }  } -\cos { \dfrac { x }{ 2 }  }  \right| $$
  • Question 3
    1 / -0
    If $$f(x) = \log x$$, $$g(x) = x^3$$, then $$f[g(a)] + f[g(b)]$$ equals
    Solution
    We have $$f(x) = \log x$$ 

    $$g(x) = x^3$$

    $$g(a) = a^3 $$

    $$f(g(a)) = \log (a^3) $$

    $$f(g(a)) =3 \log a $$

    Similarly, 

    $$f(g(b)) = 3 \log b $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 \log a + 3 \log b $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 \log ab $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 f(ab)$$
  • Question 4
    1 / -0
    Suppose f and g both are linear function with $$\displaystyle f(x)=-2x+1$$  and $$\displaystyle f \left ( g\left ( x \right ) \right )=6x-7$$ then slope of line $$y=g(x)$$ is
    Solution
    Given, $$f(x)=-2x+1$$

    $$\therefore f(g(x))=-2g(x)+1=6x-7$$

    $$\Rightarrow g(x)=-3x+4$$

    $$\Rightarrow g'(x)=-3$$

    Hence slope of $$g(x)$$ is $$-3$$
  • Question 5
    1 / -0
    If $$f(x) = x^3 $$ and $$g(x) = sin2x$$, then
    Solution
    Given,
    $$ f(x)=x^3  $$ and  $$g(x)=\sin 2x$$

    Clearly,

    $$ f(1)=1 \Rightarrow g[f(1)]=\sin 2 $$

    $$ g(\cfrac{\pi}{12}) =\dfrac{1} {2} \Rightarrow f[g(\dfrac{\pi}{12})]=\dfrac{1}{8}$$

    and,$$ f(2)=8 \Rightarrow  g[f(2)]= \sin 16 $$

    So, the correct option is (B).
  • Question 6
    1 / -0
    If $$f(x) = (a x^n)^{1/n},$$ where $$\ n \in N$$, then $$f\{f(x)\}$$ equals
    Solution
    We have, $$f(x) = (a x^n)^{1/n}=a^{1/n}x=kx$$ where $$k = a^{1/n}$$

    $$\therefore f\{f(x)\} = kf(x) = k^2x =a^{2/n} x$$
  • Question 7
    1 / -0
    If $$f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$, then $$f[g(x)]$$ equals.

    Solution
    Given $$f(x)=\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$

    then $$f[g(x)]=\ln {\displaystyle \frac { 1+\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } }  }{ 1-\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } }  }  } $$

    $$=\ln {\displaystyle \frac { 1+3x^{ 2 }+3x+x^{ 3 } }{ 1+3x^{ 2 }-3x-x^{ 3 } }  } $$

    $$=\ln\left[ {\displaystyle \frac { 1+x }{ 1-x }  }\right]^3 $$

    $$=3\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$

    $$\Rightarrow f[g(x)]=3f(x)$$

    Hence, option C.
  • Question 8
    1 / -0
    Let $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$, then $$fog (x)$$ is
    Solution
    Given $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$

    $$fog(x)=f(\log_ex)=e^{3\log_ex}=x^3$$

    Hence, option B.
  • Question 9
    1 / -0
    $$f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.$$ The equation $$f (f(x)) -x = 0$$ has
    Solution
    Given $$f(x) > x $$ $$\forall x \epsilon R$$
    Hence, $$ f(x)-x$$ has no real roots, because $$f(x)-x >0$$
    Since, $$x \epsilon R \implies f(x) \epsilon R$$
    $$f(f(x))>x$$
    $$\implies f(f(x))-x>0$$
    Hence it will have no real root.
  • Question 10
    1 / -0
    The domain of the function,  $$\displaystyle y=f(x)=\sqrt {\log_{10} \left ( \frac {5x-x^2}{4} \right )}$$ is
    Solution
    Given,
    $$\displaystyle y=f(x)=\sqrt {\log_{10} \left ( \frac {5x-x^2}{4} \right )}$$

    For given function to be defined,
    $$\displaystyle \log_{10} \left ( \frac {5x-x^2}{4} \right )\geq 0 \Rightarrow \left ( \frac {5x-x^2}{4} \right ) \geq 10^0=1$$

    $$\Rightarrow 5x-x^2\geq 4\Rightarrow x^2-5x+4\leq 0$$

    $$\Rightarrow (x-1)(x-4) \leq 0\Rightarrow x \in [1,4]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now