Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$f(x) =\frac {ax+b} {cx+d}$$. Then fof(x) = x provided that.

  • Question 2
    1 / -0

    If $$f(x) =\dfrac {1}{1-x}, x \neq 0, 1$$ then the graph of the function $$y = f[f\{f(x)\}]$$ for $$x > 1 $$  is

  • Question 3
    1 / -0

    The domain of the function f (x) = $$\displaystyle \frac{1}{\sqrt{x-3}}$$ is given by :

  • Question 4
    1 / -0

    Let $$\displaystyle f\left ( x \right )=\frac{3}{2}+\sqrt{x-\frac{3}{4}}$$ be a function and $$g\left ( x \right )$$ be another function such that $$g\left ( f\left ( x \right ) \right )=x,$$ then the value of $$g\left ( 20 \right )$$ will be

  • Question 5
    1 / -0

    Let $$f : R \rightarrow  R, g : R \rightarrow R$$ be two function such that
    $$f(x) = 2x-  3, g(x) = x^3 + 5$$
    The function $$(fog)^{1}(x)$$ is equal to.

  • Question 6
    1 / -0

    Number of integers in the domain of the function $$f\left ( x \right )=\log _{\left ( 6-x \right )}\left ( 7x-x^{2} \right )$$ is

  • Question 7
    1 / -0

    The domain of the function f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$ is

  • Question 8
    1 / -0

    If $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$ then (gofogofogogog) (x) is.

  • Question 9
    1 / -0

    The domain of the function $$f(x)=\sqrt {1-{\sqrt{1-\sqrt{1-x^2}}}}$$ is .

  • Question 10
    1 / -0

    If f(x)=2x-1 and g(x)=3x+2  then find (fog) (x)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now