Self Studies

Functions Test 21

Result Self Studies

Functions Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x) =\frac {ax+b} {cx+d}$$. Then fof(x) = x provided that.
    Solution
    $$f(f(x))=\dfrac{af(x) + b}{cf(x)+d}$$

    $$f(f(x))=\dfrac{a\dfrac{ax+b}{cx+d} + b}{c\dfrac{ax+b}{cx+d}+d}$$

    $$f(f(x))=\dfrac{a^2x + ab+bcx+bd}{acx+bc+d^2+dcx}=x$$

    $$\Rightarrow a^2x+ab+bcx+bd=acx^2+bcx+d^2x+dcx^2$$

    Given $$a=-d$$, the above equation can also be verified


  • Question 2
    1 / -0
    If $$f(x) =\dfrac {1}{1-x}, x \neq 0, 1$$ then the graph of the function $$y = f[f\{f(x)\}]$$ for $$x > 1 $$  is
    Solution
    Given $$f(x) = \cfrac{1}{1-x}$$
    $$\displaystyle \Rightarrow f\{f(x)\} = \frac{1}{1-f(x)} = \frac{1}{1-\frac{1}{1-x}}=\frac{1-x}{1-x-1}=1-\frac{1}{x}$$
    $$\displaystyle \therefore f[f\{f(x)\}] = \frac{1}{1- f\{f(x)\}}=\frac{1}{1-1+\frac{1}{x}}=x$$,  which is a straight line.
  • Question 3
    1 / -0
    The domain of the function f (x) = $$\displaystyle \frac{1}{\sqrt{x-3}}$$ is given by :
    Solution
    The function will not be defined when the denominator is 0 or when the square root has a negative number.

    Hence combination of the conditions

    $$x\neq 3$$ and $$x\geq 3$$ gives:

    $$x>3$$
  • Question 4
    1 / -0
    Let $$\displaystyle f\left ( x \right )=\frac{3}{2}+\sqrt{x-\frac{3}{4}}$$ be a function and $$g\left ( x \right )$$ be another function such that $$g\left ( f\left ( x \right ) \right )=x,$$ then the value of $$g\left ( 20 \right )$$ will be
    Solution
    $$g\left ( x \right )$$ is inverse of $$f\left ( x \right )$$

    $$\Rightarrow $$ $$\displaystyle x=\frac{3}{2}+\sqrt{y-\frac{3}{4}}$$

    $$\Rightarrow $$ $$\displaystyle y=\left ( x-\frac{3}{2} \right )^2+\frac{3}{4}=f^{-1}(x)=g(x)$$

    $$\therefore $$ $$\displaystyle g\left ( 20 \right )=\left ( 20-\frac{3}{2} \right )^{2}+\frac{3}{4}=343$$
  • Question 5
    1 / -0
    Let $$f : R \rightarrow  R, g : R \rightarrow R$$ be two function such that
    $$f(x) = 2x-  3, g(x) = x^3 + 5$$
    The function $$(fog)^{1}(x)$$ is equal to.
    Solution
    Given $$f(x) = 2x-3$$ and $$g(x) = x^3+ 5$$
    $$(fog)(x) = fg(x) = f(x^3+5) = 2(x^3+5) -3 = 2x^3 +7$$
    Let $$(fog)(x) = y = 2x^3+7$$  
    $$y-7 = 2x^3$$
    $$x = (\dfrac{y-7}{2})^{\dfrac{1}{3}}$$
    $$\therefore (fog)^{-1}(x) = (\dfrac{x-7}{2})^{\dfrac{1}{3}}$$
  • Question 6
    1 / -0
    Number of integers in the domain of the function $$f\left ( x \right )=\log _{\left ( 6-x \right )}\left ( 7x-x^{2} \right )$$ is
    Solution
    $$f(x)=log_{(6-x)}(7x-x^{2})$$

    $$=\dfrac{log(7x-x^{2})}{log(6-x)}$$

    Now
    $$7x-x^{2}>0$$
    $$x(7-x)>0$$

    $$x>0$$ and $$x<7$$ ...(i)

    And $$6-x>0$$
    Or
    $$x<6$$ ...(ii)
    Hence
    $$x\epsilon (0,6)$$
    The integral points will be $$\{1,2,3,4,5\}$$
    However
    as $$x\rightarrow 5$$

    $$log(6-x)\rightarrow 0$$.
    Hence
    $$f(x)\rightarrow \infty$$.
    Thus the integral points will be $$\{1,2,3,4\}$$
    Hence 4 integral points.
  • Question 7
    1 / -0
    The domain of the function f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$ is
    Solution
    Given,
    f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$

    For given function to be defined,
    $$-\log_{0.3}(x-1) \geq 0\Rightarrow \log_{10/3}(x-1) \geq 0\Rightarrow x-1\geq 1\Rightarrow x\geq 2$$

    and,
     
    $$-x^2+2x+8> 0\Rightarrow x^2-2x-8< 0\Rightarrow (x+2)(x-4) < 0\Rightarrow -2 < x< 4$$

    Combining above two we get required domain $$[2,4)$$
  • Question 8
    1 / -0
    If $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$ then (gofogofogogog) (x) is.
    Solution
    If $$f(x) = -x^2+1$$......

    $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$........

    $$\Rightarrow$$ $$f$$ is even and $$g$$ is odd

    $$\therefore$$ $$gogog$$ is even

    $$\Rightarrow$$ $$fogogog$$ is even

    $$\Rightarrow$$ $$gofogofogogog$$ is even.
  • Question 9
    1 / -0
    The domain of the function $$f(x)=\sqrt {1-{\sqrt{1-\sqrt{1-x^2}}}}$$ is .
    Solution
    For given function to be defined,

    $$(1-x^2) > 0\Rightarrow x^2-1\leq 0 \Rightarrow x \in [-1,1]$$
  • Question 10
    1 / -0
    If f(x)=2x-1 and g(x)=3x+2  then find (fog) (x)
    Solution
    $$(fog)(x) = f(g(x)) = 2(3x+2) -1 = 6x+4-1 = 6x+3 = 3(2x+1) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now