Self Studies

Functions Test 30

Result Self Studies

Functions Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the following functions are odd function in their default domains
    (i) $$\cfrac { { 2 }^{ x }-1 }{ { 2 }^{ x }+1 } $$
    (ii) $$\cfrac { { x }^{ 2 }+1 }{ x\sin { x }  } $$
    (iii) $$\ln { \left( \cfrac { 1+x }{ 1-x }  \right)  } $$
    (iv) $$x{ e }^{ \left| x \right| +\cos { x }  }\quad $$
    Which of these is/are odd
    Solution
    $$(i)$$  
                  $$f(x)=\dfrac{2^x-1}{2^x+1}$$

                   $$f(-x)=\dfrac{2^{-x}-1}{2^{-x}+1}=\dfrac{1-2^x}{1+2^x}$$

                    $$\implies f(-x)=-\dfrac{2^x-1}{2^x+1}=-f(x)$$

    Hence is an odd function.

    $$(ii)$$
                   $$f(x)=\dfrac{x^2+1}{x\sin x}$$

                   $$f(-x)=\dfrac{(-x)^2+1}{(-x)\sin {(-}x)}$$

                    $$\implies f(-x)=\dfrac{x^2+1}{x\sin x}=f(x)$$

    Hence is an even function.

    $$(iii)$$
                   $$f(x)=\ln{\left(\dfrac{1+x}{1-x}\right)}$$

                    $$f(-x)=\ln{\left(\dfrac{1-x}{1+x}\right)}$$

                      $$\implies f(-x)=-\ln{\left(\dfrac{1+x}{1-x}\right)}=-f(x)$$

    Hence is an odd function.

    $$(iv)$$
                   $$f(x)=xe^{|x|+\cos{x}}$$

                   $$f(-x)=(-x)e^{|-x|+\cos{(-x)}}$$

                   $$f(-x)=-xe^{|x|+\cos{x}}=-f(x)$$

    Hence is an odd function.

    Hence (i), (iii) and (iv) are odd functions.

    Answer-(D)
  • Question 2
    1 / -0
    Let $$A = \{ 1,2,3,4,5,6\} .$$ The number of onto functions from $$A$$ to$$A$$ such that.$$f\left( x \right) \ne x$$ for all $$x \in A$$ is
    Solution
    $$A=\{1,2,3,4,5,6\}$$

    $$f:A\rightarrow A$$

    $$\therefore \  $$Number of onto function$$=n!$$

                                                $$ =6!$$

                                                $$ =6\times 5\times 4\times 3\times 2\times 1$$

    $$\therefore \  $$Number of onto function$$ =720$$
  • Question 3
    1 / -0
    Let $$f:A \to b$$ be a function defined by f(x) =$$\sqrt {1 - {x^2}} $$
    Solution
    $$f:A\rightarrow B$$
    $$ f(x)=\sqrt { 1-{ x }^{ 2 } } $$
    When $$ x=0$$
    $$ f(0)=\sqrt { 1-0 } $$
    $$ =1$$
    $$ f(1)=\sqrt { 1-{ 1 }^{ 2 } } $$
    $$ =0$$
    $$ f(x)$$ is one - one function  when $$A=[0,1]$$
  • Question 4
    1 / -0
    Let $$f$$, $$g:R\rightarrow {R}$$ be two functions defined as $$ f\left( x \right) =\left| x \right| +x$$, $$ g\left( x \right) =\left| x \right| -x, \forall x\in R$$. Then, find $$fog(x)$$ 
    Solution
    $$f\left( x \right) = \left| x \right| + x$$
    $$g\left( x \right) = \left| x \right| - x$$
    $$fog\left( x \right) = f\left( {g\left( x \right)} \right)$$
    $$ = f\left( {\left| x \right| - x} \right)$$
    $$ = \left| {\left| x \right| - x} \right| + \left| x \right| - x$$
  • Question 5
    1 / -0
    Consider set $$A={1,2,3,4}$$ and set $$B={0,2,4,6,8}$$, then the number of one-one function from set $$A$$ to set $$B$$ is ?
    Solution
    Number of one-one function from
    $$\underset{(m)}{A}$$ to $$\underset{(n)}{B} =  \left\{\begin{matrix} \, ^nP_m, & if \, n \ge m \\ 0, & if \ n < m \end{matrix}\right.$$
    $$m = 4, \ n = 5$$
    One-one function $$=\, ^5P_4 = \dfrac{5!}{1!} = 120$$
  • Question 6
    1 / -0
    If $$g\left( x \right) = {x^2} + x - 2$$ and $$\frac{1}{2}gof\left( x \right) = 2{x^2} + 5x + 2$$, then $$f\left( x \right)$$ is
    Solution
    $$g(x)={ x }^{ 2 }+x-2\\ \cfrac { 1 }{ 2 } g(f(x))=2{ x }^{ 2 }+5x+2\\ \Rightarrow f^{ 2 }\left( x \right) +f(x)-2=4{ x }^{ 2 }-10x+4\\ \Rightarrow f^{ 2 }\left( x \right) +f(x)-(4{ x }^{ 2 }-10x+6)=0\\ f(x)=\cfrac { -1\pm \sqrt { 1+4(4{ x }^{ 2 }-10x+6) }  }{ 2 } \\ f(x)=\cfrac { -1\pm \sqrt { 1+16{ x }^{ 2 }-40x+24 }  }{ 2 } \\ f(x)=\cfrac { -1\pm (4x-5) }{ 2 } =(2x-3)$$
  • Question 7
    1 / -0
    Let f : $$R \to R$$ and g : $$R \to R$$ be two one-one and onto functions such that they are the mirror images of each other about the line y = 2. If h(x) = f(x) + g(x), then h(0) equal to
    Solution
    Given $$g(x)$$ and $$f(x)$$ are mirror images about $$y=2$$
    $$\implies g(x)-2=2-f(x)\implies f(x)+g(x)=4\implies h(x)=4$$
    $$h(0)=4$$
  • Question 8
    1 / -0
    If $$f(x)=2x+5$$ and $$g(x)=x^2+1$$ be two real function , then value of $$fog$$ at x=1
    Solution

  • Question 9
    1 / -0
    $$c \to c\,\,is\,defined\,as\,f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,bd \ne 0$$.then f is a constant function when
    Solution

  • Question 10
    1 / -0
    Let $$A$$ be a set of $$4$$ elements and $$B$$ has $$3$$ elements . From the set of all functions from $$A$$ to $$B$$, the probability that it is an onto function is
    Solution
    No .of functions from $$A$$ to $$B$$ is $$3^4=81$$ elements 
    No.of onto functions $$4\times 3^2=36$$
    Probability $$\dfrac{36}{81}=\dfrac 49$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now