Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f : A \rightarrow B $$ defined as $$f(x) = x^2+2x+\frac{1}{1+(x+1)^2}$$ is onto function, then set B is equal to

  • Question 2
    1 / -0

    The domain of the function $$f(x)=\sin \left (\dfrac{1}{x} \right )$$ is

  • Question 3
    1 / -0

    If $$g(f(x) ) = |\sin x |$$ and $$f(g(x))=(\sin\sqrt x)^2$$ , then 

  • Question 4
    1 / -0

    The domain of the function $$f(x) = \dfrac{arc \, cot \, X}{\sqrt{X^2 - [X^2]}}$$, where [X] denotes the greatest integer not greater than x, is :

  • Question 5
    1 / -0

    The set onto which the derivative of the function $$f(x)=x(\log x-1)$$ maps the range $$[1,\infty )$$ is

  • Question 6
    1 / -0

    Let $$E=\{1, 2, 3, 4\}$$ and $$F=\{1, 2\}$$ then the number of onto functions from E to F is

  • Question 7
    1 / -0

    Let $$f\left( x \right) ={ x }^{ 2 },g\left( x \right) ={ 2 }^{ x }$$, then solution set of $$fog\left( x \right) =gof\left( x \right) $$ is

  • Question 8
    1 / -0

    If $$D$$ is the domain of the function $${\sec ^{ - 1}}\left( {\log x} \right)$$, then $$D$$ contains 

  • Question 9
    1 / -0

    Let $$f(x+\dfrac{1}{x})=x^2+\dfrac{1}{x^2}(x\neq 0)$$, then $$f(x)=$$

  • Question 10
    1 / -0

    If f(x)=sin log $$\left( {\sqrt {4 - {x^2}} /\left( {1 - x} \right)} \right)$$ then the domain and range f are (respectively)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now