Self Studies

Functions Test 31

Result Self Studies

Functions Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f : A \rightarrow B $$ defined as $$f(x) = x^2+2x+\frac{1}{1+(x+1)^2}$$ is onto function, then set B is equal to
    Solution
    $$f:A\rightarrow B,\quad f(x)={ x }^{ 2 }+2x+\cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } \\ \because \cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } >0\\ \therefore f(x)={ x }^{ 2 }+2x+\cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } \\ a=1,\quad b=2\\ D=4-4\times 1\times (\cfrac { 1 }{ +ve } )\quad \ge 0\\ \because x\epsilon R$$
  • Question 2
    1 / -0
    The domain of the function $$f(x)=\sin \left (\dfrac{1}{x} \right )$$ is
    Solution
    $$f\left(x\right)=\sin\dfrac{1}{x}$$
    Domain of $$\sin(x)$$ is $$x\in R \Rightarrow \dfrac{1}{x}\in R$$

    $$\because \  at \ x=0$$

    $$\left (\dfrac {1} {x} \right) becomes \  \infty$$
     
    $$\therefore \  domain \  of \  f\left(x\right)=x\in R-\left\{0\right\}$$

    $$\therefore$$ The option is $$B$$   
  • Question 3
    1 / -0
    If $$g(f(x) ) = |\sin x |$$ and $$f(g(x))=(\sin\sqrt x)^2$$ , then 
    Solution
    $$g(f(x))=|sinx|=\sqrt{(sinx)^2}\\f(g(x))=(sin\sqrt x )^2=sin^2\sqrt x\\\therefore f(x)=sin^2x \>and \>g(x)=\sqrt x$$
  • Question 4
    1 / -0
    The domain of the function $$f(x) = \dfrac{arc \, cot \, X}{\sqrt{X^2 - [X^2]}}$$, where [X] denotes the greatest integer not greater than x, is :
    Solution
    $$f(x)=\cfrac { { cot }^{ -1 }X }{ \sqrt { { x }^{ 2 }-\left[ { x }^{ 2 } \right]  }  } $$
    The real value of $$x$$ is always greater than or equal to greater integer function. But as integer function $$ {x}^{2}$$ will get equal to $$\left[ { x }^{ 2 } \right].$$
    Hence $$X\in R\{n:n\in 1\}.$$
  • Question 5
    1 / -0
    The set onto which the derivative of the function $$f(x)=x(\log x-1)$$ maps the range $$[1,\infty )$$ is
    Solution
    Given $$f (x) = x [\log x-1] x \in [+, \infty]$$
    $$f (x) = x \left[ \dfrac{d}{dx} (\log x-1) \right]+ (\log x-1) \dfrac{d}{dx} (x)$$
    $$=x. \dfrac{1}{x}+ (\log x-1).1$$
     $$=1 -1 \log x-1$$
    $$f(x)= \log x$$
    $$\therefore $$ The set of $$f(x)= \log x$$ that maps 
    $$[1, \infty )$$ is $$[e, \infty )$$
  • Question 6
    1 / -0
    Let $$E=\{1, 2, 3, 4\}$$ and $$F=\{1, 2\}$$ then the number of onto functions from E to F is
    Solution
    Number of onto function from $$E$$ to $$F.$$

    $$E=\{1,2,3,4\}$$       $$F=\{1,2\} $$

    Number of function from $$E$$ to $$F=2\times 2\times 2\times 2=16$$

    We have to exclude functions where $$f(x)=1$$ & $$ f(x)=2$$.

    $$\therefore$$ Total number of onto function $$=16-2=14$$.
  • Question 7
    1 / -0
    Let $$f\left( x \right) ={ x }^{ 2 },g\left( x \right) ={ 2 }^{ x }$$, then solution set of $$fog\left( x \right) =gof\left( x \right) $$ is
    Solution

  • Question 8
    1 / -0
    If $$D$$ is the domain of the function $${\sec ^{ - 1}}\left( {\log x} \right)$$, then $$D$$ contains 
    Solution
    $$f(x)=\sec^{-1}(\log x)$$
    $$x > 0; x\neq 1$$
    $$-\infty < \log x \le -1\cup 1\le \log x \le \infty$$
    $$x \in \left (0, \dfrac {1}{e}\right) \cup [e, \infty]$$
    $$D$$ is correct
  • Question 9
    1 / -0
    Let $$f(x+\dfrac{1}{x})=x^2+\dfrac{1}{x^2}(x\neq 0)$$, then $$f(x)=$$
    Solution
    We are given
    $$f(x+ \dfrac{1}{2})= x^{2}+ \dfrac{1}{x^{2}}$$ (where $$x \neq 0$$)

    $$= x^{2}+ \dfrac{1}{x^{2}}+2-2$$.

    $$=x^{2}+ \dfrac{1}{x^{2}}+ 2 (x^{2}) \left( \dfrac{1}{x^{2}} \right)-2$$.

    $$f\left(x+ \dfrac{1}{x} \right)= \left(x+ \dfrac{1}{x} \right)^{2}-2$$

    So, simply put $$x+ \dfrac{1}{x} \rightarrow x$$

    we get $$f(x) = x^{2}-2$$
  • Question 10
    1 / -0
    If f(x)=sin log $$\left( {\sqrt {4 - {x^2}} /\left( {1 - x} \right)} \right)$$ then the domain and range f are (respectively)
    Solution

    consider the given function ,

    $$f\left( x \right)=\sin {{\log }_{e}}\left( \dfrac{\sqrt{4-{{x}^{2}}}}{1-x} \right)$$


    Now ,

    for $$\log_e\dfrac{\sqrt{4x^2}}{1-x}$$ to be defined $$ \dfrac{\sqrt{4-{{x}^{2}}}}{1-x}>0 $$

      $$ \dfrac{\sqrt{4-{{x}^{2}}}}{1-x}>0 $$

     $$ \sqrt{4-{{x}^{2}}}>0 $$,   $$x\not=1$$ and $$1-x>0$$

     $$ 4-{{x}^{2}}>0 $$                                           $$1>x$$

     $$ 4>{{x}^{2}} $$                                                  $$x<1$$

     $$ x^2-4<0$$

     $$ (x+2)(x-2)<0 $$

     $$-2<x<2$$

    combining the two we get

    $$-2<x<1$$

    $$x\epsilon(-2,1)$$

    Hence , the domain of the function is $$(-2,1)$$

    Hence, this is the range of the function $$[-1, 1]$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now