Self Studies

Functions Test 32

Result Self Studies

Functions Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of the function $$\phi \left( x \right) = {\log _7}\left( { - {{\log }_{\frac{1}{2}}}\left( {1 + \frac{1}{{\sqrt[4]{x}}}} \right) - 1} \right)$$ is 
    Solution
    $$\phi(x)=log_7\left(-log_{1/2}\left(1+\cfrac{1}{\sqrt[4]{x}}\right)-1\right)$$ is
    $$\Rightarrow log_{1/2}\left(1+\cfrac{1}{\sqrt[4]{x}}\right)<-1$$
    $$\Rightarrow 1-\cfrac{1}{\sqrt[4]{x}}>(2^{-1})^{-1}=2$$
    $$\Rightarrow \cfrac{1}{4\sqrt{x}}>1\quad; 0<x<1$$
    Hence Domain is $$[x:0<x<1]$$
  • Question 2
    1 / -0
    If f is even function and g is an odd function, then $$f_og$$ is ............function.
    Solution
    $$fog$$ function is an even function

    Let $$f\left(x \right)$$ is a even function and $$g \left( - x \right)$$ is odd function.
    So, $$f\left( {g\left( { - x} \right)} \right) = f\left( { - g\left( x \right)} \right) = even$$

  • Question 3
    1 / -0
    If $$f\left( x \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases}$$ then $$f\left( f\left( x \right)  \right) $$ is given by
    Solution

  • Question 4
    1 / -0
    The domain of the function $$y(x)$$ given by $${2^x} + {2^r} = 2$$ for all $$r \in ( - \infty ,1)$$ is:
    Solution
    For domain of $$x$$ let's assume $$r$$ as a function of $$x:$$

    Now,
    equation
    $$2^x+2^r=2$$

    $$=>r=log_2(2-2^x)$$

    So,

    $$=>2-2^x>0$$

    $$=>2^x<2$$

    $$=>x<1$$

    Therefore,solution is set form we have 
    $$=>x\epsilon(-\infty,1)$$

    Foe domain of $$r$$ let's assume $$x$$ as a function of $$r$$

    $$=>x=log_2(2-2^r)$$--------------------$$[2^x=log_2 x]$$

    So,

    $$=>2-2^y>0$$

    $$=>2^y<2$$

    $$=>y<1$$

    Therefore solution is set form we have $$r\epsilon(-\infty,1)$$

    Hence,

    $$x\epsilon(-\infty,1)$$ for $$r\epsilon(-\infty,1)$$
  • Question 5
    1 / -0
    Let $$f:X \to \left[ {1,\,27} \right]$$ be  a function by $$f\left( x \right) = 5\sin x + 12\cos x + 14$$. The set $$X$$ so that $$f$$ is one-one and onto is 
    Solution

  • Question 6
    1 / -0
    If : $$f(x) = 5 {x}^{2}$$, $$g(x) = 3x^{4}$$, then : $$(fog) (-1) =$$ 
    Solution

  • Question 7
    1 / -0
    Let $$g\left( x \right) =1+x-\left[ x \right] $$ and $$f\left( x \right) =\begin{cases} -1,x<0 \\ 0,x=0 \\ 1,x>0 \end{cases}$$ Then for all $$x,f\left( g\left( x \right) \right) $$ is equal to (where $$\left[ . \right] $$ represents the greatest integer function)
    Solution

  • Question 8
    1 / -0
    The distinct linear functions which maps from $$[-1,1]$$ onto $$[0,2]$$ are 
    Solution
    $$[-1,1]\rightarrow [0,2]$$ onto are
    $$x1!=f(x)$$
    $$f(-1)=0$$
    $$f(1)=2$$
    $$-1+2=f(x)$$
    $$f(-1)=2$$
    $$f(1)=0$$
  • Question 9
    1 / -0
    For $$a,\ b\ \in \ R-\left\{ 0 \right\}$$, let $$f(x)=ax^{2}+bx+a$$ satisfies $$f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \in\ R$$.
    Also the equation $$f(x)=7x+a$$ has only one real distinct solution. The minimum value of $$f(x)$$ in $$\left[0,\dfrac{3}{2}\right]$$ is equal to
    Solution

  • Question 10
    1 / -0
    If function $$f\left( x \right) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right);\left( { - 1 < x < 1} \right)$$ and $$g\left( x \right) = \sqrt {3 + 4x - 4{x^2}} $$, then the domain of $$gof$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now