Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$E=\left\{1,2,3,4\right\}$$ and $$F=\left\{1,2\right\}$$. Then the number of onto functions from $$E$$ to $$F$$ is

  • Question 2
    1 / -0

    Number of one-one functions from A to B where $$n(A)=4, n(B)=5$$.

  • Question 3
    1 / -0

    If $$f\left( x \right) =\sqrt { { x }^{ 2 }-4 } $$ and $$g\left( x \right) =\dfrac { x-1 }{ x-3 } $$ then number of integer elements, which are not in the domain of the function $$(f.g)(x)$$ equals 

  • Question 4
    1 / -0

    Let $$f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1$$. If $$f(x)$$ divided by $$x^ {3}-x$$, then the remainder is some function of $$x$$ say $$g(x)$$. Then $$g(x)$$ is an:-

  • Question 5
    1 / -0

    If f : $$R\rightarrow S$$, defined by f(x) =sin x -$$\sqrt{3}$$ cos x +1, is onto, then the interval of S is 

  • Question 6
    1 / -0

    If $$ f(x) = \sqrt{2-x} $$ and $$ g(x) = \sqrt{1-2x} , $$ then the domain of $$ log(x) $$ is :

  • Question 7
    1 / -0

    If $$  f : R \rightarrow R  $$ be given by $$  f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},  $$ then $$fof(x)$$ is

  • Question 8
    1 / -0

    Let : $$R\rightarrow R$$ defined as $$f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 } $$

  • Question 9
    1 / -0

    If domain of  $$f$$  is  $$D _ { 1 }$$  and domain of  $$g$$  is  $$D _ { 2 }$$   then domain of  $$f + g$$  is :

  • Question 10
    1 / -0

    Let f : $$R\rightarrow R$$ be a function defined by f(x) = $${ x }^{ 3 }+{ x }^{ 2 }+3x+sin\times .$$ Then f is.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now