Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The function $$f(x)= \dfrac{(3^{x}-1^{})^2}{\sin x. \ln(1+x)}, x\neq 0 $$ , is continuous at $$x=0$$. Then the value of $$f(0)$$ is 

  • Question 2
    1 / -0

    The domain of the function $$f(x) = \frac {1} {\sqrt {^{10}C_{x - 1} - 3 \times ^{10} C_x}}$$ contains the points

  • Question 3
    1 / -0

    The domain of $$ f(x) = \cos^{-1} \left ( \frac{2 - |x|} {4} \right ) + \left [ log (3 - x) \right ]^{-1}$$ is

  • Question 4
    1 / -0

    The domain of the function $$f(x) = \sqrt{ log \left (\frac{1} {|\sin x| } \right)}$$ is 

  • Question 5
    1 / -0

    The domain of $$f(x)  = \log| \log {x}|$$ is 

  • Question 6
    1 / -0

    Directions For Questions

    $$f(x) = \begin{cases} x-1, -1 \leq x \leq 0\\x^2, 0\leq x\leq 1 \end{cases}$$ and g(x) = sin x, consider the functions.
    $$h_1(x) = f(|g(x)|) \space and \space h_2(x) = |f(g(x))|$$.

    ...view full instructions

    Which of the following is not true about $$h_1(x)$$?

  • Question 7
    1 / -0

    Consider the function
    f(x) = $$\begin{cases} (x + 1) , x \leq 1\\ 2x + 1, 1< x \leq 2 \end{cases} and \space g(x) = \begin{cases} x^2, -1 \leq x < 2\\ x+1, 2 \leq x \leq 3 \end{cases}$$

    The domain of the function f(g(x)) is

  • Question 8
    1 / -0

    Directions For Questions

    If $$a_{o} = x, a_{n+1} = f(a_n)$$, where n = 0, 1, 2,.....then answer the following question

    ...view full instructions

    If f: $$R\rightarrow R$$ be given by $$f(x) = 3 + 4x$$ and $$a_n = A + Bx$$, then which of the following is not true?

  • Question 9
    1 / -0

    Consider two functions $$f(x) = \begin{cases} [x],       -2 \leq x \leq -1\\ |x| + 1,      -1 < x \leq 2 \end{cases}$$ and  g(x) = \begin{cases} [x],   -\pi \leq x < 0 \\ sin x,    0 \leq x \leq \pi \end{cases} where [.] denotes thegreatest integer function

    The exhaustive domain of g(f(x)) is

  • Question 10
    1 / -0

    Let $$g(x) = f(x) - 1$$. If $$f(x) + f(1 - x) = 2 \space \forall \space x \space \epsilon \space R$$, then $$g(x)$$ is symmetrical about

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now