Self Studies

Functions Test 43

Result Self Studies

Functions Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    From $$ ] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[ $$ which of the following is one - one onto function defined in R
  • Question 2
    1 / -0
    Domain of function 
    $$ f (x) = \dfrac{1}{\sqrt{|x| - x}} $$
    Solution
    It is that function is defined is x < 0 because [x > 0 then f (x)  ]Required domain of f (y)   = $$ R^{-}$$
  • Question 3
    1 / -0
    If $$n \geq 2$$ then the number of surjections that can be defined from $$\{1, 2, 3, .......  n\}$$ onto $$\{1, 2\}$$ is
    Solution
    Let $$A=\{1,2,3,...,n\} $$ and $$B=\{1,2\} $$ . 
    Therefore, total number of mappings from $$A$$ to $$B$$ is $$2^n$$ of which two functions $$f(x)=1$$ for all $$x\in A$$ and $$g(x)=2$$ for all $$x\in A$$ are not surjective.
    Thus, the total number of surjections from $$A$$ to $$B$$ is $$2^n-2$$.
  • Question 4
    1 / -0
    If $$f\left( x \right)=\sqrt { 3\left| x \right| -x-2 } $$ and $$g(x)=\sin(x)$$, then the domain of the definition of $$f\circ g\left( x \right) $$ is
    Solution
    We have $$\displaystyle f\left( x \right) =\sqrt { 3\left| x \right| -x-2 } $$ and $$g\left( x \right) =\sin { x } $$

    $$\therefore f\circ g\left( x \right) =\sqrt { 3\left| \sin { x }  \right| -\sin { x } -2 } $$ which is defined, 
    if $$3\left| \sin { x }  \right| -\sin { x } -2\ge 0$$

    If $$\sin { x } >0,$$ then $$2\sin { x } -2\ge 0\quad $$
    $$\Rightarrow \sin { x } \ge 1$$
    $$\displaystyle \Rightarrow \sin { x } =1\Rightarrow x=\frac { \pi  }{ 2 } $$

    If $$\sin { x } <0,$$ then $$\displaystyle -4\sin { x } -2\ge 0\Rightarrow -1\le -\frac { 1 }{ 2 } $$

    $$\displaystyle \therefore x\in \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) \bigcup _{ n,m\in I }^{  }{ \left( 2n\pi +\frac { \pi  }{ 2 }  \right)  } n,m\in I$$ 
  • Question 5
    1 / -0
    Domain of the function $$f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}$$, is
    Solution
    Here, $$f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}$$ would exist, if

    $$\displaystyle 4x-|x^2-10x+9| > 0$$

    ie, $$\displaystyle |x^2-10x+9| < 4x$$,

    where $$\displaystyle |x^2-10x+9|=\begin{cases}x^2-10x+9 & x\leq 1 \text{ or } x \geq 9\\ -(x^2-10x+9) &1 < x < 9 \end{cases}$$

    Case I: When $$x\leq 1$$ or $$x\geq 9$$
    $$\therefore x^2-10x+9 < 4x$$
    $$\Rightarrow x^2-14x+9 < 0 \Rightarrow (x-7)^2 < 40$$
    $$\Rightarrow x\in (7-\sqrt {40}, 7+\sqrt {40})$$ (But $$x\leq 1$$ or $$x\geq 9$$)
    $$\Rightarrow x\in (7-\sqrt {40}, 1]\cup [9, 7+\sqrt {40})$$ .....(i)
    Case II: When $$1 < x < 9$$
    $$-x^2+10x-9 < 4x\Rightarrow x^2-6x+9 > 0$$
    $$\Rightarrow (x-3)^2 > 0$$ which is always true except $$x=\left \{3\right \}$$
    $$\therefore x\in (1, 9)=\left \{3\right \}$$.....(ii)
    From Eqs. (i) and (ii), domain of $$f(x)\in (7-\sqrt {40}, 7+\sqrt {40})-\left \{3\right \}$$
    Hence, (d) is the correct answer.
  • Question 6
    1 / -0
    The domain of the function $$\displaystyle f(x)=\sin^{-1}\dfrac {1}{|x^2-1|}+\dfrac {1}{\sqrt {\sin^2x+\sin x+1}}$$ is
    Solution
    As, $$\sin^2x+\sin x+1 > 0, \forall x\in R$$
    $$\displaystyle \therefore \frac {1}{\sqrt {\sin^2x+\sin x+1}}$$ is always exists.
    $$\displaystyle \therefore$$ For $$\sin^{-1}\left (\dfrac {1}{|x^2-1|}\right )$$ to exists,
    $$\displaystyle 0 < \frac {1}{|x^2-1|} \leq 1\Rightarrow |x^2-1|\geq 1$$
    $$\displaystyle \Rightarrow x^2-1 \leq -1$$ or $$x^2-1\geq 1$$
    $$\displaystyle \Rightarrow x^2\leq 0$$ or $$x^2\geq 2$$
    $$\displaystyle \Rightarrow x=0$$ or $$(x\leq -\sqrt 2$$ or $$x\geq \sqrt 2)$$
    $$\displaystyle \therefore x\in (-\infty, -\sqrt 2]\cup [\sqrt 2, \infty)\cup \left \{0\right \}$$
    Hence, (c) is the correct answer.
  • Question 7
    1 / -0
    If $$f (x) = x + 2, g (x) = 2 x +3,$$ then find gof
  • Question 8
    1 / -0
    Which of the following functions is not injective ?
    Solution
    A:
    $$f:R\rightarrow R, f(x)=2x+7$$
    $$\dfrac{dy}{dx}=2>0     \rightarrow$$ one-one (Injective)

    B: 
    $$f:[0,\pi]\rightarrow [-1,1],f(x)=\cos x$$
    $$\dfrac{dy}{dx}=\sin x=(+ve)       \rightarrow$$ one-one (Injective)

    C:
    $$f: \left[-\dfrac{\pi}2, \dfrac{\pi}2\right], f(x) = 2\sin x+3$$
    $$\dfrac{dy}{dx}= 2\cos x=+ve      \rightarrow$$ one-one (Injective)

    D:
    $$f:R\rightarrow [-1,1],f(x)=\sin x$$
    $$\dfrac{dy}{dx}=\cos x=+ve$$ & $$-ve      \rightarrow$$ many one 

    Hence, option D.
  • Question 9
    1 / -0
    Let $$\displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right)$$ be defined by $$\mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a})$$. Then the set of values of '$$\mathrm{a}$$' for which $$\mathrm{f}$$ is onto is
    Solution
    $$f(x)=\tan^{-1}(x^2+x+a)$$
    For, $$f(x)$$ to be onto, codomain should be exactly equal to range.
    That is, range of funnction $$ \displaystyle f(x) =  \left[ 0,\frac { \pi  }{ 2 }  \right)  $$
    So, $$0\leqslant \tan^{-1}(x^2+x+a)<\dfrac{\pi}{2}$$
    Now, $$ \displaystyle { x }^{ 2 }+x+a={ \left( x+\dfrac { 1 }{ 2 }  \right)  }^{ 2 }+a-\dfrac { 1 }{ 4 } $$
    The above expression will take all real values from $$ \left[0, \infty \right)$$, only if $$ \displaystyle a = \dfrac{1}{4}$$
    Hence, only for $$ a= \dfrac{1}{4}$$, the function is onto.
  • Question 10
    1 / -0
    Let $$\displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}$$, then $$fof(x)={x}$$, provided
    Solution
    Given,

    $$f(x)=\dfrac{ax+b}{cx+d}$$

    $$f(f(x))=\dfrac{a\left ( \dfrac{ax+b}{cx+d}\right )+b}{c\left ( \dfrac{ax+b}{cx+d} \right )+d}=x$$

    $$=\dfrac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=x$$

    $$a(ax+b)+b(cx+d)=x[c(ax+b)+d(cx+d)]$$

    $$(a^2+bc)x+(ab+bd)=(ac+cd)x^2+(bc+d^2)x$$

    matching the coefficients of $$x$$, we get,

    $$a^2+bc=bc+d^2$$

    $$a^2=d^2$$

    $$d=\pm a$$

    matching the coefficients of $$x^2$$, we get,

    $$ac+cd=0$$

    $$\therefore d=-a$$

    matching constant terms, we get,

    $$ab+bd=0$$

    $$d=-a$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now