Self Studies

Functions Test 44

Result Self Studies

Functions Test 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following functions is/are injective map(s) ?
    Solution
    The function $$f(x)=x^2 + 2, x \in (-\infty, \infty)$$ is not injective as 
    $$f(1)=f(-1) $$ but $$1 \neq -1.$$

    The function $$f(x)=(x-4)(x-5), x \in (-\infty, \infty)$$ is not one-one as $$f(4)=f(5)$$ but $$4 \neq 5.$$

    The functin $$f(x)=\dfrac{4x^2 + 3x -5}{4 + 3x - 5x^2}, x \in (-\infty,\infty)$$ is also not injective as $$f(1)=f(-1)$$ but $$1 \neq -1$$.

    For the function , $$f(x)=-|x+2|, x\in [-2,\infty)$$

    Let $$f(x)=f(y),x,y \in [-2,\infty) \Rightarrow |x+2| = |y+2| $$
    $$\Rightarrow x+2 = y+2$$
    $$\Rightarrow x=y$$
    So , $$f$$ is an injective map.
  • Question 2
    1 / -0
    Let $$f:\ (-1,1)\rightarrow B$$ be a function defined by $$ f(x)={ \tan }^{ -1 }\cfrac { 2x }{ 1-{ x }^{ 2 } } $$, then $$f$$ is both one-one and onto when B is the interval
    Solution
    Let $$x=\tan(a)$$
    Hence
    $$\Rightarrow$$$$f(x)=\tan^{-1}\left(\dfrac{2\tan(a)}{1-\tan^2(a)}\right)$$
    $$=\tan^{-1}(\tan(2a))$$

    $$=2a$$

    $$=2\tan^{-1}x$$

    Now, since f is one-one and onto, 
    $$ -1 < x<1$$

    $$\Rightarrow$$$$ 2\tan^{-1}(-1) < 2\tan^{-1}x < 2\tan^{-1}(1)$$

    $$\displaystyle -\frac{\pi}{2} <f(x) < \frac{\pi}{2}$$

    So, the range of $$\displaystyle \tan^{-1}(x)=\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$$.

    So, $$B=\displaystyle \left(\frac{-\pi}{2},\frac{\pi}{2}\right)$$.
  • Question 3
    1 / -0
    The domain of the function $$f(x)=\log_3 \log_{1/3}(x^2+10x+25)+\dfrac {1}{[x]+5}$$ where [.] denotes the greatest integer function) is
    Solution
    For given function to be defined,
    (i) $$x^2+10x+25>0\Rightarrow (x+5)^2>0\Rightarrow x\neq -5=D_1$$
    (ii) $$\log_{1/3}(x^2+10x+25)>0\Rightarrow x^2+10x+25<1$$
    $$\Rightarrow x^2+10x+24<0\Rightarrow (x+4)(x+6)<0\Rightarrow x\in(-6,-4)=D_2$$
    and
    (iii) $$[x]+5\neq 0\Rightarrow x\notin [-5,4)=D_3$$
    Hence domain of f is $$D_!\cap D_2\cap D_3 =(-6,-5)$$
  • Question 4
    1 / -0
    If $$f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right )$$ is a onto function, then set of values of $$a$$ is
    Solution
    Given, $$f(x)$$ is onto.
    $$\therefore \displaystyle \frac {\pi}{6}\leq \sin^{-1}\left (\frac {-x^2-a}{x^2+1}\right ) < \frac {\pi}{2}$$
    $$\Rightarrow \displaystyle \frac {1}{2}\leq \frac {x^2-a}{x^2+1} < 1$$
    $$\Rightarrow \displaystyle \frac {1}{2}\leq 1-\frac {(a+1)}{x^2+1} < 1, \forall x\epsilon R $$
    $$\Rightarrow a+1 > 0$$
    $$\Rightarrow a\in (-1, \infty)$$
    Hence, (c) is the correct answer.
  • Question 5
    1 / -0
    Which one of the following functions is not one-one?
    Solution
    $$ x(x-1)$$ is not a one -one function in whole $$R$$.
    This function has a minima at $$x=\dfrac12$$, therefore repeats value after $$x=\dfrac12$$.
    We can also see that $$x(x-1) = 0$$ for $$x=0,1$$ and therefore $$e^{x(x-1)} =1$$ for both $$x=0 \&\ 1$$, which rules it out as a one to one function.

  • Question 6
    1 / -0
    Let f: $$X\rightarrow Y$$ be a function defined by $$f(x)=a \sin \left (x+\dfrac {\pi}{4}\right )+b \cos x+c$$. If f is both one-one and onto, then find the sets $$X$$ and $$Y$$
    Solution
    $$f\left( x \right) =a\sin { \left( x+\dfrac { \pi  }{ 4 }  \right)  } +b\cos { x } +c\\ =\dfrac { a }{ \sqrt { 2 }  } \sin { x } +\dfrac { a }{ \sqrt { 2 }  } \cos { x } +b\cos { x } +c\\ =\dfrac { a }{ \sqrt { 2 }  } \sin { x } +\dfrac { a+b\sqrt { 2 }  }{ \sqrt { 2 }  } \cos { x } +c\\ =r\cos { \alpha  } \sin { x } +r\sin { \alpha  } \cos { x } +c\quad \left( \because \quad r=\sqrt { { a }^{ 2 }+{ b }^{ 2 }+\sqrt { 2 } ab } \quad and\quad \tan { \alpha  } =\frac { a+b\sqrt { 2 }  }{ a }  \right) \\ =r\sin { \left( x+\alpha  \right)  } +c$$
    Since $$\quad f\left( x \right) \quad$$ is a one-one onto function, $$\sin { \left( x+\alpha  \right)  }$$ values must not be repetitive.
    $$\therefore \quad -\dfrac { \pi  }{ 2 } \quad \le x+\alpha \le \dfrac { \pi  }{ 2 } \quad$$  and $$\quad c-r\le f\left( x \right) \le c+r$$
  • Question 7
    1 / -0
    $$f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R$$ is a one-one function, then the value of $$b^2+c^2$$ is
    Solution
    Here, $$f(x)=x^3+3x^2+4x+b \sin x+c \cos x$$
    $$f'(x)=3x^2+6x+4+b \cos x-c \sin x$$
    Now, for $$f(x)$$ to be one-one, the only possibility is
    $$f'(x)\geq 0, \forall x\in R$$
    ie, $$3x^2+6x+4+b \cos x-c \sin x\geq 0, \forall x\in R$$
    ie, $$3x^2+6x+4 \geq c \sin x-b \cos x, \forall x\in R$$
    As we are approximating lower bound for the function by a number instead of a function, hence we chose the number.
    ie, $$3x^2+6x+4 \geq \sqrt {b^2+c^2}, \forall x\in R$$
    ie, $$\sqrt {b^2+c^2} \leq 3(x^2+2x+1)+1,\forall x\in R$$
    $$\sqrt {b^2+c^2} \leq 3(x+1)^2+1, \forall x\in R$$
    $$\sqrt {b^2+c^2} \leq 1, \forall x \in R$$
    $$\Rightarrow b^2+c^2 \leq 1, \forall x \in R$$
    Hence, (c) is the correct answer. 
  • Question 8
    1 / -0
    If $$f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|)$$ and $$h(x)=f(g(x))$$, then domain of $$\sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}}$$ is
    Solution
    Since, $$f(x)=\left\{\begin{matrix}2x+x, & x\geq 0\\ 2x-x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}3x, & x\geq 0\\ x, & x < 0\end{matrix}\right.$$
    and $$g(x)=\dfrac {1}{3}\left\{\begin{matrix}2x-x, & x\geq 0\\ 2x+x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}\dfrac {x}{3}, & x\geq 0\\ x, & x < 0\end{matrix}\right.$$
    $$\therefore f(g(x))=\left\{\begin{matrix}3\left (\dfrac {x}{3} \right ) & x\geq0\\ x & x < 0\end{matrix}\right.$$
    $$\Rightarrow f(g(x))=x, \forall x\in R$$
    $$\therefore h(x)=x$$
    $$\Rightarrow \sin^{-1} (h(h(h....h(x)....)))=\sin^{-1}x$$
    $$\therefore$$ Domain of $$\sin^{-1} (h(h(h(h.....h(x)....))))$$ is $$[-1, 1]$$
    Hence, A is the correct answer.
  • Question 9
    1 / -0
    The function $$f$$ is one to one and the sum of all the intercepts of the graph is $$5$$. The sum of all the intercept of the graph $$\displaystyle y = f^{-1} \left ( x \right )$$ is
    Solution
    Since the function $$f$$ is one-one there exist only one $$x$$-intercept and only one $$y$$-intercept for the function.
    Let $$a$$ be the $$y$$-intercept of the function $$f$$. Hence $$f\left( 0 \right) = a$$, but then we have $${f^{ - 1}}\left( a \right) = 0$$. 
    Therefore $$a$$ is an $$x$$-intercept of the function $${f^{ - 1}}$$.
    Similarly the $$x$$-intercept of the function$$f$$ is $$y$$-intercept of the function $${f^{ - 1}}$$, say $$b$$.
    Hence the sum of the intercepts of the function $$f$$ is same as the sum of the intercepts of the function $${f^{ - 1}}$$ which is equal to 5.

  • Question 10
    1 / -0
    Let $$f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right. $$ where $$[\cdot]$$ denotes the greatest integer function. Then $$\displaystyle f\left \{f(-2.3) \right\}$$ is equal to 
    Solution
    $$f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right. $$
    .

    $$f\left( -2.3 \right) =1+\left| -2.3 \right| =3.3\dots ( \because x < -1$$) 
    .

    hence, $$f\left( f\left( -2.3 \right)  \right) =f\left( 3.3 \right) =\left[ 3.3 \right] =3$$

    $$f\left( f\left( -2.3 \right)  \right)=3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now