Self Studies

Functions Test 45

Result Self Studies

Functions Test 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    Let $$f :R\rightarrow R$$ is a quadratic function, $$f(x) = ax^{2} + bx + c$$ where $$a, b, c$$ are non zero real numbers and it satisfies certain properties
    (i)$$f:\left [ 0,2 \right ]\rightarrow \left [ 0,2 \right ]$$ is bijective
    (ii)$$f:\left [ \alpha,2 + \alpha\right ]\rightarrow \left [ 0,2 \right ]$$ is bijective for some non -zero real value of $$\alpha$$.

    ...view full instructions

    $$l= \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}$$ is
    Solution
    For the quadratic function $$f(x) = ax^2 + bx +c$$, it's given that $$a, b, c$$ are non-zero.

    Hence, $$f(0) = c \neq 0$$

    It's given that $$f:[0,2] \rightarrow [0,2]$$ is bijective.

    Since $$f(0) \neq 0$$, $$f(0) = 2$$ for it to be bijective.

    $$ \Rightarrow f(2) = 0$$

    So, three cases possible as shown in the figure, which will satisfy the second condition as well.

    For cases 1 and 2,

    $$ \displaystyle \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}$$

    $$ \displaystyle =\lim _{ x\rightarrow \alpha } \frac { 1 }{ x\left( x-2 \right) } \lim _{ x\rightarrow \alpha } \frac { f(x) }{ x-\alpha } \\ \displaystyle =\frac { 1 }{ \alpha \left( \alpha -2 \right) } \lim _{ x\rightarrow \alpha } \frac { f'(x) }{ 1 } =\frac { f'(\alpha ) }{ \alpha \left( \alpha -2 \right) } $$

    $$f'(\alpha)$$ is positive for both cases. $$ \alpha( \alpha -2)$$ is also positive for both cases. Hence, the limit value is also positive.

    For the case in figure-3,

    $$ \displaystyle \lim _{ x\rightarrow \alpha } \frac { f(x) }{ x(x-\alpha )(x-2) } =\lim _{ x\rightarrow \alpha } \frac { 1 }{ x } \lim _{ x\rightarrow \alpha } \frac { f(x) }{ { \left( x-\alpha \right) }^{ 2 } } \\ \displaystyle =\frac { 1 }{ \alpha } \lim _{ x\rightarrow \alpha } \frac { f'(x) }{ 2\left( x-\alpha \right) } =\frac { 1 }{ \alpha } \lim _{ x\rightarrow \alpha } \frac { f''(x) }{ 2 } =\frac { 1 }{ \alpha } \frac { f''\left( \alpha \right) }{ 2 } $$

    $$f''(\alpha) > 0$$ since the graph is facing upwards. Also $$ \alpha$$ is positive.

    Hence, in this case also , the value of limit is positive. Hence, option A is correct.

  • Question 2
    1 / -0
    The domain of the function $$\displaystyle y=\underbrace { \log _{ 10 } \log _{ 10 } ...\log _{ 10 } x }_{ \text{ n times } } $$ is
    Solution
    $$\displaystyle y=\underbrace { \log _{ 10 } \log _{ 10 } .........\log _{ 10 } x }_{ \text{ n times } } $$

    $$\underbrace { \log _{ 10 } \log _{ 10 } .........\log _{ 10 } x }_{ \text{ n-1 times } }>0$$

    $$\underbrace { \log _{ 10 } \log _{ 10 } .........\log _{ 10 } x }_{ \text{ n-2 times } }>10^0$$

    $$\underbrace { \log _{ 10 } \log _{ 10 } .........\log _{ 10 } x }_{ \text{ n-3 times } }>10^1$$

    $$\underbrace { \log _{ 10 } \log _{ 10 } .........\log _{ 10 } x }_{ \text{ n-4 times } }>10^{10}$$

    similarly

    $$\displaystyle x>10^{10^{10^{10...(n-2) times}}}$$

    Hence, option D.
  • Question 3
    1 / -0
    If $$\displaystyle f \left ( x \right ) = px + q$$ and $$\displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21$$, where $$p$$ and $$q$$ are real numbers, the $$ p + q$$ equals
    Solution
    $$f(x)=px+q$$
    $$f(f(x))=p(px+q)+q$$
    $$=p^2x+q(p+1)$$
    $$f(f(f(x)))=p(p^2x+q(p+1))+q$$
    $$=p^{3}x+q(p(p+1)+1)$$
    $$=8x+21$$
    By comparing coefficients, we get
    $$p^{3}=8$$
    $$p=2$$
    And $$q(2(3)+1)=21$$
    $$7q=21$$
    $$q=3$$
    Hence
    $$f(x)=2x+3$$
    Therefore, $$p+q=2+3=5$$
  • Question 4
    1 / -0

    Directions For Questions

    Let $$\displaystyle f(x) = x^2 - 2x - 1 \: \forall \: x \: \in \: R$$. Let $$\displaystyle f: (-\infty, a] \rightarrow [b, \infty)$$, where $$a$$ is the largest real number for which $$f(x)$$ is bijective.

    ...view full instructions

    The value of $$(a + b)$$ is equal to
    Solution
    $$x^{2}-2x-1$$ is an upwards facing parabola. Therefore, it has a point of minimum $$=-\dfrac{b}{2a}=\dfrac12\times$$ Sum of roots
    After the point of minimum the curve slopes up and the function no longer remain one-one. Hence the largest interval for it to be injecvtive is upto the point of minimum.
    The roots of the quadratic are,
    $$\rightarrow x=1+\sqrt{2} $$ and $$x=1-\sqrt{2}$$
    So $$a=\dfrac{1+\sqrt{2}+1-\sqrt{2}}{2}$$
    $$=1$$
    $$f(1)=(1-1)^{2}-2$$
    $$=-2$$
    $$=b$$
    Hence $$a+b$$
    $$=1-2$$
    $$=-1$$
  • Question 5
    1 / -0
    The domain of the function $$\displaystyle f\left( x \right)=\sin ^{ -1 }{ \left\{ \log _{ 2 }{ \left( \frac { 1 }{ 2 } { x }^{ 2 } \right)  }  \right\}  } $$ is
    Solution
    For $$f(x)=\displaystyle \sin ^{ -1 }{ \left\{ \log _{ 2 }{ \left( \frac { 1 }{ 2 } { x }^{ 2 } \right)  }  \right\}  } $$ to be defined, we must have
    $$\displaystyle -1\le \log _{ 2 }{ \left( \frac { 1 }{ 2 } { x }^{ 2 } \right)  } \le 1\Rightarrow { 2 }^{ -1 }\le \frac { 1 }{ 2 } { x }^{ 2 }\le { 2 }^{ 1 }\Rightarrow 1\le { x }^{ 2 }\le 4$$   ...(1)    $$[\because$$ the base $$=2>1]$$
    Now, $$1\le { x }^{ 2 }\Rightarrow { x }^{ 2 }-1\ge 0\Rightarrow \left( x-1 \right) \left( x+1 \right) \ge 0\Rightarrow x\le -1$$ or $$x\ge 1$$   ...(2)
    Also, $${ x }^{ 2 }\le 4\Rightarrow { x }^{ 2 }-4\le 0\Rightarrow \left( x-2 \right) \left( x+2 \right) \le 0\Rightarrow -2\le x\le 2$$         ...(3)
    From (2) and (3), we get the domain of $$f$$
    $$=\left( (-\infty ,-1]\cup [1,\infty ) \right) \cap \left[ -2,2 \right] =\left[ -2,-1 \right] \cup \left[ 1,2 \right] $$
  • Question 6
    1 / -0
    $$K(x)$$ is a function such that $$K(f(x))=a+b+c+d$$,
    Where,
    $$a=\begin{cases}
    0 & \text{ if f(x) is even}  \\ 
    -1 & \text{ if f(x) is odd} \\ 
    2 & \text{ if f(x) is neither even nor odd} 
    \end{cases}$$
    $$b=\begin{cases}
    3 & \text{ if  f(x) is periodic} \\ 
    4 & \text{  if  f(x) is  aperiodic}
    \end{cases}$$
    $$c=\begin{cases}
    5 & \text{ if  f(x) is  one one} \\ 
    6 & \text{  if  f(x) is many one}
    \end{cases}$$
    $$d=\begin{cases}
    7 & \text{ if  f(x) is onto} \\ 
    8 & \text{  if  f(x) is into}
    \end{cases}$$ 
    $$h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )$$ 

    On the basis of above information, answer the following questions.$$K(\phi(x)) $$
    Solution
    $$\phi(x)\rightarrow \left(\dfrac{-\pi}{2},\dfrac{\pi}{2}\right)$$
    Now we know that for the given domain, $$\tan(x)$$ is one-one, periodic, odd and an into function.
    Hence $$f(\phi(x))$$
    $$=-1+3+5+8$$
    $$=16-1$$
    $$=15$$
  • Question 7
    1 / -0
    Let $$f:{x, y, z}\rightarrow (a, b, c)$$ be a one-one function. It is known that only one of the following statements is true:
    (i) $$f(x)\neq b$$
    (ii)$$f(y)=b$$
    (iii)$$f(z)\neq  a$$
    Solution
    When (i) is true, then $$f(x) \neq b, f(y) \neq b , f(z) = a $$

    $$\Rightarrow$$ Two ordered pair function is possible $$ f(x) = a, f(y) = c, f(z) = a$$ or $$f(x) = c, f(y) = a, f(z) = a$$

    But given $$f$$ is one-one and only one such function is possible. Hence (i) can't be true.

    When (ii) is true, then $$f(y) = b, f(z) =a , f(x) = b$$. This is also not possible.

    Clearly if (iii) is true then it is satisfying every condition.
    Hence ordered pair of $$f$$ is $$\{(x,a), (y,b), (z,c)\}$$
  • Question 8
    1 / -0
    The domain of function $$\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}$$ is
    Solution
    $$\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}$$

    $$ x-\sqrt{1-x^{2}} \geq 0 $$ and $$ 1 -x^{2}\geq0 $$

    $$\Rightarrow x\geq\sqrt{1-x^{2}}$$ and $$  -1\leq x \leq1$$ ... (i)

    Now, $$ x^2\geq(\sqrt{1-x^{2}})^2$$, for positive $$x$$

    $$x\leq-\dfrac{1}{\sqrt{2}} $$ or $$ x\geq\dfrac{1}{\sqrt{2}}$$     ... (ii)

    From (i) and (ii), we get

    $$x\in\displaystyle \left [ -1,-\frac{1}{\sqrt{2}} \right ]\cup \left [ \frac{1}{\sqrt{2}},1 \right ]$$

    Hence, option 'D' is correct.
  • Question 9
    1 / -0
    The domain of the function $$\displaystyle f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}$$ is
    Solution
    For real range of $$f(x)$$

    $$1-x^{2}\geq 0$$

    $$x^2\leq 1$$

    $$|x|\leq 1$$

    $$-1 \leq x \leq 1$$

    $$x\in [-1,1]$$

    Hence the domain for the above function is $$[-1,1]$$
  • Question 10
    1 / -0
    Let $$\displaystyle f(x)=\sin^{2}\dfrac{x}{2}+\cos^{2}\frac{x}{2}$$ and $$g(x)=\sec^{2}x-\tan^{2}x.$$ The two functions are equal over the set 
    Solution
    We know,
     $$\displaystyle f(x)=sin^{2}\frac{x}{2}+cos^{2}\frac{x}{2}=1 $$ for all values of $$x$$ and $$\:g(x)=sec^{2}x-tan^{2}x=1 $$ except $$ x=(2n+1)\dfrac{\pi}{2} where  n \epsilon Z$$

    Therefore, two functions are equal in the interval:

    $$\displaystyle R-\left \{ x|x=(2n+1)\frac{\pi}{2} ,n\:\epsilon Z\right \}$$

    Hence, option 'C' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now