Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Domain of the function $$\displaystyle \frac{1}{\sqrt{^{10}C_{x-1}-3^{10}C_{x}}}$$ is given by

  • Question 2
    1 / -0

    If $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
    Number of negative integral solutions of $$g(f(x)) + 2 = 0$$ are 

  • Question 3
    1 / -0

    Find all posible values of $$x$$ satisfying $$\displaystyle \dfrac{\left [ x \right ]}{\left [ x-2 \right ]}-\dfrac{\left [ x-2 \right ]}{\left [ x \right ]}=\dfrac{8\left \{ x \right \}+12}{\left [ x-2 \right ]\left [ x \right ]}$$ (where $$[\cdot]$$ denotes the greatest integer function and $$\{\cdot\}$$ is fractional part).

  • Question 4
    1 / -0

    Let $$f(x)=\ln x$$  and  $$g(x)\, =\, \left (\displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3 )}\right )$$. The domain of $$f(g(x))$$ is

  • Question 5
    1 / -0

    The domain of the function $$ f(x)=\sqrt{\log _{\sin x+\cos x}(\left| \cos x\right|+\cos x)},0\leq x \leq \pi$$ is

  • Question 6
    1 / -0

    Let $$f(x) = \begin{cases} 1+x, & 0\leq x\leq 2 \\ 3-x, & 2<x\leq 3 \end{cases}$$, then find $$(fof)(x)$$

  • Question 7
    1 / -0

    Given two functions $$f(x)$$ and $$g(x)$$ such that $$f(x) = \sin (arctan x), g(x) =\tan (arc\sin x)$$, and $$0\leq x < \dfrac {\pi}{2}$$. The value of the composite function $$f\left (g\left (\dfrac {\pi}{10}\right )\right ) $$ is:

  • Question 8
    1 / -0

    If $$f(x) = x^{2} + x$$ and $$g(x) = \sqrt {x}$$, then the value of $$f(g(3))$$ is

  • Question 9
    1 / -0

    If $$f(x)=2x^3$$ and $$g(x)=3x$$, calculate the value of $$g(f(-2))-f(g(2))$$.

  • Question 10
    1 / -0

    $$f(x)\, =\, -1\, + |x\, -\, 2|, \, 0\, \leq\, x\, \leq\, 4$$
    $$g(x)\, =\, 2\, -\, |x|,\, -1\, \leq\, x\, \leq\, 3$$
    Which of the following is true

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now