Self Studies

Functions Test 47

Result Self Studies

Functions Test 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Domain of the function $$\displaystyle \frac{1}{\sqrt{^{10}C_{x-1}-3^{10}C_{x}}}$$ is given by
    Solution
    By definition of $$\displaystyle ^{n}C_{r}, r\leq n $$

    $$\therefore x\leq

    10$$ ...(1)  

    Also we know that $$\displaystyle

    \frac{^{n}C_{r}}{^{n}C_{r-1}}= \frac{n-r+1}{r}$$

    and $$\displaystyle

    ^{10}C_{x-1}-3 ^{10}C_{x}\geq 0$$ or $$\displaystyle \frac{1}{3}\geq

    \frac{^{10}C_{x}}{^{10}C_{x-1}}= \frac{10-x+1}{x}= \frac{11-x}{x}$$

    i.e. $$\displaystyle x\geq 33-3x$$ or $$\displaystyle x\geq

    \frac{33}{4} > 8$$  ......(2)

    $$\displaystyle \therefore x= 9,

    10$$ by (1) and (2)
  • Question 2
    1 / -0
    If $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
    Number of negative integral solutions of $$g(f(x)) + 2 = 0$$ are 
    Solution
    $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},$$
    $$g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
    $$g(f(x))+2=0,\\ g(f(x))=-2,\\ g(f(x))=\begin{cases} x+1\quad \quad if\quad x\leq 0 \\ 1-x\quad if\quad 1\ge x>0 \\ x^{ 2 }-3\quad if\quad 2>x>1 \\5-x^2\quad if \quad x\geq 2\end{cases}\\ For\quad x<0\quad to\quad be\quad a\quad solution,\\ x+1=-2\longrightarrow 1\quad solution\\ $$

    Hence, option C.
  • Question 3
    1 / -0
    Find all posible values of $$x$$ satisfying $$\displaystyle \dfrac{\left [ x \right ]}{\left [ x-2 \right ]}-\dfrac{\left [ x-2 \right ]}{\left [ x \right ]}=\dfrac{8\left \{ x \right \}+12}{\left [ x-2 \right ]\left [ x \right ]}$$ (where $$[\cdot]$$ denotes the greatest integer function and $$\{\cdot\}$$ is fractional part).
    Solution
    Here, 
    $$\displaystyle \frac{\left [ x \right ]}{\left [ x-2 \right ]}-\frac{\left [ x-2 \right ]}{\left [ x \right ]}=\frac{8\left \{ x \right \}+12}{\left [ x-2 \right ]\left [ x \right ]}$$

    $$\Rightarrow \displaystyle \frac{\left [ x \right ]^{2}-\left [ x-2 \right ]^{2}}{\left [ x-2 \right ]\left [ x \right ]}=\frac{8\left \{ x \right \}+12}{\left [ x \right ]\left [ x-2 \right ]}$$

    $$\Rightarrow $$   $$\displaystyle \frac{\left ( \left [ x \right ]-\left [ x-2 \right ] \right )\left ( \left [ x \right ]+\left [ x-2 \right ] \right )}{\left [x-2 \right ]\left [ x \right ]}=\frac{8\left \{ x \right \}+12}{\left [ x \right ]\left [ x-2 \right ]}$$

    $$\Rightarrow $$   $$\left ( \left [ x \right ]-\left [ x-2 \right ] \right )\left ( \left [ x \right ]+\left [ x-2 \right ] \right )=8\left \{ x \right \}+12$$

    $$\Rightarrow $$   $$\left ( \left [ x \right ]-\left [ x \right ]+2 \right )\left ( \left [ x \right ]+\left [ x \right ]-2 \right )=8\left \{ x \right \}+12$$ .......... $$\left ( \because \left [ x+I \right ]=\left [ x \right ]+I \right )$$

    $$\Rightarrow  4([x]-1)=8\{x\}+12$$

    $$\Rightarrow  [x]-4=2\{x\}$$ ..... $$(i)$$

    Now, as we know 
    $$0\leq \left \{ x \right \}< 1\Rightarrow 0\leq 2\left \{ x \right \}< 2$$

    $$\Rightarrow 0\leq \left [ x \right ]-4< 2\Rightarrow 4\leq \left [ x \right ]< 6$$

    $$\Rightarrow \left [ x \right ]=4, 5$$
    If $$[x]=4\Rightarrow 2\{x\}=[x]-4$$ $$\Rightarrow \{x\}=0$$ ........ $$(ii)$$
    And if $$[x]=5\Rightarrow 2\{x\}=[x]-4$$ $$\Rightarrow \displaystyle \left \{ x \right \}=\frac{1}{2}$$ ...... $$(iii)$$
    From eqs. $$(ii)$$ and $$(iii)$$, we have
    $$x=[x]+\{x\}$$
    ie, $$x=4+0=4$$ ......  [Using Eq. $$(ii)$$]
    and $$x=5+\dfrac{1}{2}=\dfrac{11}{2}$$ ........ [Using Eq. $$(iii)$$]

    $$\Rightarrow \displaystyle x\in \left \{ 4, \dfrac{11}{2} \right \}$$

    Hence, option A is correct.
  • Question 4
    1 / -0
    Let $$f(x)=\ln x$$  and  $$g(x)\, =\, \left (\displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3 )}\right )$$. The domain of $$f(g(x))$$ is
    Solution
    $$f(x)=\ln x$$ and $$g(x)\, =\, \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3}$$

    Now, $$f(g(x))=f \left( \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} \right)$$

    $$\Rightarrow f(g(x))=\ln\left( \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} \right)$$

    For log to be defined 
    $$\displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} >0$$
    The above inequality holds for all $$x\in R$$
  • Question 5
    1 / -0
    The domain of the function $$ f(x)=\sqrt{\log _{\sin x+\cos x}(\left| \cos x\right|+\cos x)},0\leq x \leq \pi$$ is
    Solution
    $$\begin{cases} |\cos x| + \cos x > 0; x \in\left[0,\dfrac{\pi}{2}\right)\\ |\cos x| + \cos x = 0; x\in \left[\dfrac{\pi}{2}, \pi\right]\end{cases}$$

    For $$\displaystyle x\in \left [ 0, \frac{\pi }{2} \right )$$,

    $$\displaystyle 1 < \sin x+\cos x\leq \sqrt{2}$$

    Now, for $$\displaystyle x\in \left ( 0, \frac{\pi }{2} \right )$$

    $$\displaystyle \log _{\sin x+\cos x}(\left | \cos x \right |+\cos x)\geq 0$$

    As for $$\log_a x$$, $$a > 1$$, so $$x$$ must be $$≥0$$

    $$|\cos x| + \cos x ≥ 0$$

    As we are considering $$x \in \left(0,\dfrac{\pi}2\right)$$    ... (1)

    $$\Rightarrow  \cos x + \cos x ≥ 1$$

    $$\Rightarrow 2\cos x ≥ 1$$

    $$\Rightarrow \cos x ≥\dfrac12$$

    Using (1), we can say that 

    $$x \in \left(0,\dfrac{\pi}3\right)$$

    Hence, option C.
  • Question 6
    1 / -0
    Let $$f(x) = \begin{cases} 1+x, & 0\leq x\leq 2 \\ 3-x, & 2<x\leq 3 \end{cases}$$, then find $$(fof)(x)$$
    Solution
    Given $$f(x) = \begin{cases} 1+x, & 0\leq x\leq 2 \\ 3-x, & 2<x\leq 3 \end{cases}$$

    Case I: When $$0\leq x\leq 2$$
    $$(fof)(x)=f[f(x)]=f(1+x)$$
    Since,$$0\leq x\leq 2$$
    $$\Rightarrow 1\leq 1+x\leq 3$$
    $$(fof)(x)=1+1+x=2+x$$ when $$1\leq 1+x\leq 2$$
    $$\Rightarrow (fof)(x)=2+x$$ when $$0\leq x\leq 1$$
    And $$(fof)(x)=3-(1+x)=2-x $$when $$2<1+x\leq 3$$
    $$\Rightarrow (fof)(x)=2-x$$ when $$1<x \le 2$$

    Case I: When $$2< x\leq 3$$
    $$(fof)(x)=f[f(x)]=f(3-x)$$
    Since,$$0\leq x\leq 2$$
    $$\Rightarrow -2< -x \leq 0$$
    $$\Rightarrow 1< 3-x \le 3$$
    $$(fof)(x)=1+3-x=4-x$$ when $$1\le  3-x\leq 2$$
    $$\Rightarrow (fof)(x)=4-x$$ when $$1\le x\leq 2$$
    And $$(fof)(x)=3-(3-x)=x $$when $$2<3-x\leq 3$$
    $$\Rightarrow (fof)(x)=x$$ when $$0<x \le 1$$
  • Question 7
    1 / -0
    Given two functions $$f(x)$$ and $$g(x)$$ such that $$f(x) = \sin (arctan x), g(x) =\tan (arc\sin x)$$, and $$0\leq x < \dfrac {\pi}{2}$$. The value of the composite function $$f\left (g\left (\dfrac {\pi}{10}\right )\right ) $$ is:
    Solution
    $$g(x)=\tan { (\sin ^{ -1 }{ x } ) } =\tan { \theta  } $$
    $$=\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  } $$
    $$f(x)=\sin { (\tan ^{ -1 }{ x } ) } =\dfrac { x }{ \sqrt { 1+{ x }^{ 2 } }  } $$
    $$f(g(x))=\dfrac { g(x) }{ \sqrt { 1+{ g(x) }^{ 2 } }  } $$
    $$=\dfrac { \dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  }{ \sqrt { 1+\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  }  } =x$$
    $$f(g(\dfrac { \pi  }{ 10 } ))=0.314$$

  • Question 8
    1 / -0
    If $$f(x) = x^{2} + x$$ and $$g(x) = \sqrt {x}$$, then the value of $$f(g(3))$$ is
    Solution
    Given, $$f(x)=x^2+x, g(x)=\sqrt x$$
    Then we need to find the value of $$f(g(3))$$
    $$\Rightarrow g(3) = \sqrt3$$ ..... given $$g(x) = \sqrt x $$
    $$\Rightarrow f(g(3)) = f(\sqrt3) = 3 + \sqrt3 $$  ..... given $$f(x) = { x }^{ 2 }+x$$
  • Question 9
    1 / -0
    If $$f(x)=2x^3$$ and $$g(x)=3x$$, calculate the value of $$g(f(-2))-f(g(2))$$.
    Solution
    • $$f(-2) = 2 \times { (-2) }^{ 3 } = -16$$ 
    • $$g(2) = 3 \times 2 =6$$
    • $$g(f(-2)) = g(-16) = 3 \times -16 = -48$$
    • $$f(g(2)) = f(6) = 2 \times { (6) }^{ 3 } = 432$$
    • $$g(f(-2)) - f(g(2)) = -48-432 = -480$$
  • Question 10
    1 / -0
    $$f(x)\, =\, -1\, + |x\, -\, 2|, \, 0\, \leq\, x\, \leq\, 4$$
    $$g(x)\, =\, 2\, -\, |x|,\, -1\, \leq\, x\, \leq\, 3$$
    Which of the following is true
    Solution
    $$f(x)\, =\, -1\, + |x\, -\, 2|, \, 0\, \leq\, x\, \leq\, 4$$
    $$g(x)\, =\, 2\, -\, |x|,\, -1\, \leq\, x\, \leq\, 3$$

    $$ g(f(x))=2-|-1+|x-2||,$$

    $$ gof(x)=\begin{cases} 2-[2-x-1] & 0\, \leq \, x\, <\, 1 \\ 2+[2-x-1], & 1\, \leq \, x\, \leq \, 2 \\ 2+[x-2-1], & 2\, <\, x\, \leq \, 3 \\ 2-[x-2-1], & 3\, <\, x\, \leq \, 4 \end{cases}\\ gof(x)\, =\, \begin{cases} x\, +\, 1, & 0\, \leq \, x\, <\, 1 \\ 3\, -\, x, & 1\, \leq \, x\, \leq \, 2 \\ x\, -\, 1, & 2\, <\, x\, \leq \, 3 \\ 5\, -\, x, & 3\, <\, x\, \leq \, 4 \end{cases}\\ $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now