Self Studies

Functions Test 5

Result Self Studies

Functions Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of one-one functions that can be defined from $$A=\{4,8,12,16\}$$ to $$B$$ is $$5040,$$ then $$n(B)=$$
    Solution
    The first element $$4$$ of $$A$$ can be mapped to any of the $$n$$ elements in $$B$$
    Similarly second element $$8$$ of $$A$$ can be mapped to any of $$(n-1)$$ elements in $$B$$
    $$\Rightarrow$$ Total no of one - one functions is
    $$n(n-1)(n-2)(n-3)=5040$$
    $$\Rightarrow n=10$$
  • Question 2
    1 / -0
    If $$f:R\rightarrow R, g:R\rightarrow R$$ are defined by $$f(x)=x^{2}, g(x)=\cos x$$  then $$(gof)(x)=$$
    Solution
    $$gof\left ( x \right )=g\left ( f\left ( x \right ) \right )=g\left ( x^{2} \right )$$
    $$=\cos x^{2}$$

  • Question 3
    1 / -0
    Let $$f(x)=\dfrac{Kx}{x+1}(x\neq -1)$$ then the value of $$K$$ for which $$(fof)(x)=x$$ is
    Solution
    $$f\left ( f\left ( x \right ) \right )=f\left ( \dfrac{kx}{x+1} \right )$$
    $$=\dfrac{k\left ( \dfrac{kx}{x+1} \right )}{\dfrac{kx}{x+1}=1}=\dfrac{k^{2}x}{\left ( k+1 \right )x+1}$$
    $$\therefore$$ for $$f\left ( f\left ( x \right ) \right )=x$$
    $$\Rightarrow k+1=0$$
    $$k^{2}=1$$
    $$\therefore k=-1$$
  • Question 4
    1 / -0
    If $$n (A) = 4$$ and $$n(B) = 6$$, then the number of surjections from $$A$$ to $$B$$ is
    Solution
    $$n(A)<n(B)$$
    $$\therefore$$ Co-domain can never be equal to range.
    $$\therefore$$ No of surjections is zero

  • Question 5
    1 / -0
    $$f:\left ( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right )\rightarrow \left ( -\infty ,\infty  \right )$$ defined by $$f(x)=1+3x$$ is
    Solution
    $$f(x_{1})=f(x_{2}) \Rightarrow  1+3x_{1}=1+3x$$
    $$x_{1}=x_{2}$$
    $$\therefore f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}$$
    $$\therefore$$ f is one-one.
    $$f$$ lies  b/w  $$(1-\dfrac{3\pi }{2},\dfrac{1+3\pi }{2})$$
    $$\therefore$$ co-domain $$(-\infty ,\infty )$$ is not equal to range $$(\dfrac{1-3\pi }{2},\dfrac{1+3\pi }{2})$$
    $$\Rightarrow$$ f is not onto.
    $$\therefore$$ f is one-one but not onto.

  • Question 6
    1 / -0
    Let $$A=\{1,2,3\}, B =\{a, b, c\}$$ and If $$f=\{(1,a),(2,b),(3,c)\}, g=\{(1,b),(2,a),(3,b)\}, h=\{(1,b)(2,c),(3,a)\}$$ then
    Solution
    $$g(1)=g(3)=b \Rightarrow$$  g is not one-one.
    domain of $$f =$$ domain of $$h = A.$$
    range of $$f =$$ range of $$h = B$$
    $$n(A)=n(B)=3$$
    $$\therefore f$$ and $$h$$ are injections.

  • Question 7
    1 / -0
    If $$f:R\rightarrow R, g:R\rightarrow R$$ are defined by $$f(x)=4x-1,g(x)=x^{3}+2,$$ then $$(gof)\left(\dfrac{a+1}{4}\right)=$$ 
    Solution
    $$g\left ( f\left ( \dfrac{a+1}{4} \right ) \right )=g\left ( 4\left ( \dfrac{a+1}{4} \right )-1 \right )$$
    $$=g\left ( a \right )$$
    $$=a^{3}+2$$
  • Question 8
    1 / -0
    If $$f(x)=2x+1$$ and $$g(x)=x^{2}+1$$ then $$ (go(fof))(2)=$$
    Solution
    $$(go(fof))\left( x \right) =g\left( f\left( f\left( x \right)  \right)  \right) $$
    $$=g\left ( f\left ( 2x+1 \right ) \right )$$
    $$=g\left ( 2\left ( 2x+1 \right )+1 \right )$$

    $$=g\left ( 4x+3 \right )$$
    $$=\left ( 4x+3 \right )^{2}+1$$
    $$(go(fof))\left ( 2 \right )=\left ( 11 \right )^{2}+1=122$$
  • Question 9
    1 / -0
    If $$f:R\rightarrow R,f(x)=3x-2$$ then $$ (fof)(x)+2=$$
    Solution
    $$fof (x)=f(f(x))$$
    $$=f(3x-2)$$
    $$=3(3x-2)-2$$
    $$=9x-8$$
    $$fof(x)+2=9x-6=3(3x-2)$$
    $$=3f(x)$$
  • Question 10
    1 / -0
    If $$f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}$$  and $$ (go\sqrt{f})(16)=$$
    Solution
    $$\sqrt{f\left ( x \right )}=\dfrac{1}{\sqrt{x}}$$
    $$g\left ( \sqrt{f\left ( x \right )} \right )=g\left ( \dfrac{1}{\sqrt{x}} \right )=\dfrac{1}{\sqrt{\sqrt{x}}}=\dfrac{1}{x^{\frac{1}{4}}}$$
    $$\left ( go\sqrt{f} \right )(16)=\dfrac{1}{\left ( 16 \right )^{\dfrac{1}{4}}}=\dfrac{1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now