Self Studies

Functions Test 51

Result Self Studies

Functions Test 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A real valued function $$f(x)$$ satisfies the function equation $$f(x-y)=f(x)f(y)-f(a-x)f(a+y)$$ where a is a given constant and $$f(0)=1, f(2a-x)$$ is equal to?
    Solution

  • Question 2
    1 / -0
    Let $$f\left( x \right)={2^{10}}x + 1$$ and $$g\left( x \right) = {3^{10}}x - 1$$ , If $$\left( {fog} \right)\left( x \right) = x$$ , then $$x$$ is equal to
    Solution
    Given:$$f\left(x\right)={2}^{10}x+1$$  and  $$g\left(x\right)={3}^{10}x-1$$

    $$f\left(g\left(x\right)\right)=x$$

    $$\Rightarrow\,f\left({3}^{10}x-1\right)=x$$

    $$\Rightarrow\,{2}^{10}\left({3}^{10}x-1\right)+1=x$$

    $$\Rightarrow\,{2}^{10}{3}^{10}x-{2}^{10}+1=x$$

    $$\Rightarrow\,-{2}^{10}+1=x-{2}^{10}{3}^{10}x$$

    $$\Rightarrow\,-{2}^{10}+1=x\left(1-{2}^{10}{3}^{10}\right)$$

    $$\Rightarrow\,x=\dfrac{-{2}^{10}+1}{1-{2}^{10}{3}^{10}}$$

    $$\Rightarrow\,x=\dfrac{{2}^{10}-1}{{2}^{10}{3}^{10}-1}$$

    $$\Rightarrow\,x=\dfrac{{2}^{10}-1}{{2}^{10}{3}^{10}-1}$$

    $$\Rightarrow\,x=\dfrac{{2}^{10}-1}{{2}^{10}\left({3}^{10}-{2}^{-10}\right)}$$

    $$\Rightarrow\,x=\dfrac{1-{2}^{-10}}{\left({3}^{10}-{2}^{-10}\right)}$$

  • Question 3
    1 / -0
    $$f : R^+ \rightarrow R$$ defined by $$f(x) = 2^x , \, x \in (0, 1), \, f(x) = 3^x , \, x \in [1, \, \infty)$$ is 
    Solution

  • Question 4
    1 / -0
    If $$f(x)=1+|x-1|,-1 \le x \le 3$$ and $$g(x)=2-|x+1|,-2 \le x \le 2$$ then choose the appropriate option.
    Solution

  • Question 5
    1 / -0
    If $$f(x)=|x|$$ and $$g(x)=[x]$$, then value of $$fog \left(-\dfrac {1}{4}\right)+gof \left(-\dfrac {1}{4}\right)$$ is  ?
    Solution

  • Question 6
    1 / -0
    The function $$f : R\rightarrow R$$ given by, then $$f(x)=3-2\sin x$$ is
    Solution

  • Question 7
    1 / -0
    Let $$f(x)=\dfrac{x^{2}-4}{x^{2}+4}$$ for $$|x|>2$$, then the function $$f:(-\infty, -2)\cup [2,\infty)\rightarrow (-1,1)$$ is
    Solution
    $$\begin{array}{l} f\left( x \right) =\frac { { { x^{ 2 } }-4 } }{ { { x^{ 2 } }+4 } }  \\ let\, \, f\left( x \right) =y \\ \Rightarrow y=\frac { { { x^{ 2 } }-4 } }{ { { x^{ 2 } }+4 } }  \\ \Rightarrow { x^{ 2 } }y+4y-{ x^{ 2 } }+4=0 \\ \Rightarrow { x^{ 2 } }\left( { y-1 } \right) +4\left( { y+1 } \right) =0 \\ \Rightarrow { x^{ 2 } }=\frac { { -4\left( { y+1 } \right)  } }{ { y-1 } }  \\ \Rightarrow x=\frac { { \sqrt { 4\left( { y+1 } \right)  }  } }{ { \left( { 1-y } \right)  } }  \\ \Rightarrow \frac { { 4\left( { y+1 } \right)  } }{ { 1-y } } 0 \\ \Rightarrow y+,0 \\ \Rightarrow y-1 \\ \Rightarrow 1-y0 \\ \Rightarrow y1 \\ Hence,\, \, range\, \, of\, \, { f^{ b } }\, \, is\left( { -1,1\, \, which\, \, is\, \, equal\, \, to\, \, Codomain } \right)  \\ \therefore \, \, { f^{ h } }\, \, is\, \, one-one-onto{ 1mu } \end{array}$$
  • Question 8
    1 / -0
    If $$f\left( x \right)  = \sin ^{ 2 }{ x } + \sin ^{ 2 }({ { x }+\frac { \pi  }{ 3 })  + \cos { x\cos { \left( { x } + \frac { \pi  }{ 3 }  \right),  ~g(\frac { 5 }{ 4 })  = 1, \text{then} \left( gof \right)\left( x \right)  }  }\ \text{ is}\  \text{equal}\  \text{to}  } $$
    Solution

  • Question 9
    1 / -0
    $$f:A \rightarrow A,A=\left\{a_{1},a_{2},a_{3},a_{4},a_{5}\right\}$$, then the number of one one function so that $$f(x_{i})\neq x_{i},x_{i}\ \in\ A$$ is
    Solution

  • Question 10
    1 / -0
    If $$f(x)=x-\cfrac{1}{x}$$ then number of solutions of $$f(f(f(x)))=1$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now