Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Show that the function $$f:[0, \infty)\rightarrow [0, \infty)$$ defined by $$f(x)=\dfrac{2x}{1+2x}$$ is?

  • Question 2
    1 / -0

    The domain of the function $$\text{f(x)}={ \text{log} }_{ 5 }({\text{ log} }_{ 4 }\{ { \text{log} }_{ 4/\pi  }({ \tan }^{ -1 }x)^{ -1 }\} )$$ is

  • Question 3
    1 / -0

    The domain of $$f(x)=\dfrac{1}{\sqrt{(x-1)(x-2)(x-3)}}$$ is 

  • Question 4
    1 / -0

    The domain of $$f(x)=\log_{x}\log_{2}\left(\dfrac {1}{x-1/2}\right)$$ is 

  • Question 5
    1 / -0

    Let $$f:R\rightarrow R$$ be defined by $$f(x)=\dfrac {x|x|}{2}+\cos x+1$$ then $$f(x)$$ is

  • Question 6
    1 / -0

    If $$P(S)$$ denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set $$S=\{1,2,3\}$$ to he set $$P(S)$$

  • Question 7
    1 / -0

    $$\begin{aligned} \text { If } A & = \{ x | x / 2 \in Z , 0 \leq x \leq 10 \} \\ B & = \{ x | x \text { is one digit prime } \} \\ C & = \{ x | x / 3 \in N , x \leq 12 \} \end{aligned}$$,
    Then $$A \cap ( B \cup C )$$ is equal to-


  • Question 8
    1 / -0

    The function $$f:N\rightarrow N $$ defined by $$f\left( x \right) =x-5\left[ \dfrac { x }{ 5 }  \right]$$, where $$N$$ is the set of natural numbers and $$[x]$$ denotes the greatest integer less then or equal to $$x$$ is

  • Question 9
    1 / -0

    Let $$f:R\rightarrow R$$ is defined as $$f(x)=\begin{cases} 2x+{ \alpha  }^{ 2 },\ x \ge 2 \\ \frac { \alpha x }{ 2 } +10,\ x <2 \end{cases}$$. If $$f(x)$$ is onto function then set of values of $$\alpha$$ is

  • Question 10
    1 / -0

    Let $$f(x)=\sqrt{\cos^{-1}\sqrt{1-x^{2}}-\sin^{-1}{x}}$$ then which of the following statement(s) is/are correct

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now