Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The domain of definition of the function $$y=\dfrac { 325 }{ 197 } \left[ \dfrac { \sqrt { { x }^{ 2 }-1 }  }{ \sqrt { { x-1 } }  }  \right] $$

  • Question 2
    1 / -0

    The domain of the function $$f\left( x \right) =3\sqrt { \dfrac { x }{ 1-\left| x \right|  }  } $$

  • Question 3
    1 / -0

    Let n(A) = 4 and n(B) = 6. Then the number of one - one  functions from A to B is 

  • Question 4
    1 / -0

    The domain of the definition of the function $$y\left(x\right)$$ given by the equation $$2^ {x}+2^ {y}$$ is

  • Question 5
    1 / -0

    The domain of$$f(x)={ log }_{ 2 }{ log }_{ 3 }{ log }_{ \frac { 4 }{ \pi  }  }^{ \left( tan^{ -1 }x \right) ^{ -1 } }$$ :-

  • Question 6
    1 / -0

    The domain of the function: $$f\left( x \right) =x.\dfrac { 1+2{ \left( x+4 \right)  }^{ -0.5 } }{ 2-{ \left( x+4 \right)  }^{ 0.5 } } +{ \left( x+4 \right)  }^{ 0.5 }+4{ \left( x+4 \right)  }^{ -0.5 }$$

  • Question 7
    1 / -0

    Domain of $$y=\sqrt{log_{2}(\frac{x}{x+3})}$$ is

  • Question 8
    1 / -0

    The domain & Range of the function $$f\left( x \right) =\dfrac { x }{ \left\{ x \right\}  } $$

  • Question 9
    1 / -0

    The domain of function $${ log }_{ 10 }{ log }_{ 10 }{ log }_{ 10 }{ log }_{ 10 }{ log }^{ x }_{ 10 }$$ is :-

  • Question 10
    1 / -0

    The function f:$$R\rightarrow R$$ defined by f(x)=x-[x],$$\forall x\epsilon R\quad is$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now