Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f:R\rightarrow R\quad defined\quad by\quad f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ { -x }^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,\quad then\quad f\quad is$$

  • Question 2
    1 / -0

    If $$y^2 = ax^2 +bx+c$$, then $$y^2 \dfrac{d^2y}{dx^2}$$ is

  • Question 3
    1 / -0

    The domain of definition of the function $$f(x)=\sqrt{log_{x^2-1}x}$$ is-

  • Question 4
    1 / -0

    If $$\left|x\right|$$ denotes the integral part of $$x$$ and $$f(x)$$ has domain $$\left[ -\dfrac { 5 }{ 2 } ,2 \right] $$, the domain of $$f\left( \left[ \left| x \right|  \right]  \right) $$ is

  • Question 5
    1 / -0

    The domain of the real valued function $$f(x)$$ for which $$4^{f(x)+4^{1-f(x)}}= 4^{x}$$ is 

  • Question 6
    1 / -0

    The domain of the function $$f(x) =\log_{\left[x+\dfrac{1}{2}\right]} |x^{2}-5x+6|$$ is 

  • Question 7
    1 / -0

    The function $$f:R\rightarrow R$$ defined by $$f\left(x\right)=6^ {x}+6$$ is

  • Question 8
    1 / -0

    Directions For Questions

    $$f:R \rightarrow R$$ defined by, $$f(x) = x^3 + x^2 f'(1) + x.f^n(2) + f^m(3)$$ for all $$x \in R$$

    ...view full instructions

    $$f(x)$$ is

  • Question 9
    1 / -0

    If $$fxln\left(1+\dfrac{1}{x}\right)dx=p(x)ln\left(1+\dfrac{1}{x}\right)+\dfrac{1}{2}x-\dfrac{1}{2}ln(1+x)+c$$, being arbitary costant, then

  • Question 10
    1 / -0

    The domain of $$\frac{x+1}{\sqrt{x^{2}-5x+6}}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now