Self Studies

Functions Test 55

Result Self Studies

Functions Test 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f:R\rightarrow R\quad defined\quad by\quad f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ { -x }^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,\quad then\quad f\quad is$$
    Solution

  • Question 2
    1 / -0
    If $$y^2 = ax^2 +bx+c$$, then $$y^2 \dfrac{d^2y}{dx^2}$$ is
    Solution
    $$y^{2}=a x^{2}+b x+c \quad$$ is
    Differentiating this equ. (i),
    $$2 y \dfrac{d y}{d x}=2 a x+6$$
    Differentiating above equation again,
    $$2 y \dfrac{d^{2} y}{d x^{2}}+2\left(\dfrac{d y}{d x}\right)\left(\dfrac{d y}{d x}\right)=2 a$$
    $$\dfrac{d^{2} y}{d x^{2}}=\dfrac{2 a-2\left(\dfrac{d y}{d x}\right)^{2}}{2 y}=\dfrac{a-\left(\frac{d y}{d x}\right)^{2}}{y}$$
    $$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
    $$y^{2} \dfrac{\alpha^{2} y}{d x^{2}}=y^{2}\left(\dfrac{a-\left(\dfrac{d y}{d x}\right)^{2}}{y}\right)$$
    $$=y\left(a-\left(\dfrac{d y}{d x}\right)^{2}\right) \quad\left\{\begin{array}{l}\because 2 y \dfrac{d y}{d x}=2 a x+b \\ \frac{d y}{d x}=\dfrac{2 a x+b}{2 y}\end{array}\right\}$$
    $$=y\left(a-\left(\dfrac{2 a x+b}{2 y}\right)^{2}\right)$$
    $$=\dfrac{y\left(4 a y^{2}-\left(4 a^{2} x^{2}+b^{2}+4 a b x\right)\right.}{4 y^{2}}$$
    $$=\dfrac{4 a y^{2}-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a\left(a x^{2}+6 x+c\right)-4 a^{2} x^{2}-6^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a^{2} x^{2}+4 a b x+4 a c-4 a^{2} x^{2}-b^{2}-4 a b x}{4 y}$$
    $$=\dfrac{4 a c-b^{2}}{4 y}$$
    $$\therefore$$ It is function of $$y$$ only.
    option (C) is correct.
  • Question 3
    1 / -0
    The domain of definition of the function $$f(x)=\sqrt{log_{x^2-1}x}$$ is-
    Solution

  • Question 4
    1 / -0
    If $$\left|x\right|$$ denotes the integral part of $$x$$ and $$f(x)$$ has domain $$\left[ -\dfrac { 5 }{ 2 } ,2 \right] $$, the domain of $$f\left( \left[ \left| x \right|  \right]  \right) $$ is
    Solution

  • Question 5
    1 / -0
    The domain of the real valued function $$f(x)$$ for which $$4^{f(x)+4^{1-f(x)}}= 4^{x}$$ is 
    Solution
    Given,
    $$4^{f(x)}+4^{(1-f(x)}=4^{x}$$
    $$\Rightarrow \quad 4^{f(x)}+\frac{4}{4^{f(x)}}=4^{x}$$
    $$\Rightarrow \frac{4^{f(x)} \cdot 4^{f(x)}+4}{4^{f(x)}}=4^{x}$$
    $$\Rightarrow y^{2 f(x)}+4=4^{x+f(x)}$$

    Dividing above equation by 4 on both sides
    $$\begin{aligned} & \frac{4^{2 f(x)}}{4}+1=\frac{y^{x+f(x)}}{4} \\ \Rightarrow & 4^{2 f(x)-1}+1=4^{x+f(x)-1}-(i) \\ &\left.1+4^{-(1-2 f(x)}=4^{x-f(x)}-(ii\right)\end{aligned}$$

    $$\text {both equation are same, } \\$$
    $$\text { Then, }$$
    $$4^{2 f(x)-1}  =4^{1-2 f(x)} \\$$
    $$2 f(x)-1  =1-2 f(x) \\$$
    $$f(x)+3 f(x)  =2 \\$$
    $$\Rightarrow  4 f(x)=2 \\$$
    $$7  f(x)=\frac{1}{2}$$

    $$\quad 4^{x+f(x)-1}=4^{x-f(x)}$$
    $$\Rightarrow x+f(x)-1=x-f(x)$$
    $$\Rightarrow \quad 2 f(x)=1$$
    $$\Rightarrow \quad f(x)=\frac{1}{2}$$
    $$Therefore = f(x)$$ is a constant function.

    but from above equation
    $$4^{x}=4^{f(x)}+4^{1-f(x)}$$

    $$\text { = Putting the value of } f(x)=\frac{1}{2} \\$$
    $$\text { in above equation. } \\$$
    $$\Rightarrow \quad 4^{x}=4^{\frac{1}{2}}+4^{1-\frac{1}{2}} \\$$
    $$\Rightarrow \quad 4^{x}=4$$

    $$x=1$$
    $$x$$ has one value in i.e. $$x=1$$
    So, $$x \in[1, \infty)$$
    Option C

  • Question 6
    1 / -0
    The domain of the function $$f(x) =\log_{\left[x+\dfrac{1}{2}\right]} |x^{2}-5x+6|$$ is 
    Solution

  • Question 7
    1 / -0
    The function $$f:R\rightarrow R$$ defined by $$f\left(x\right)=6^ {x}+6$$ is
    Solution

    $$f: R \rightarrow R \\$$
    $$f(x)=6^{x}+6$$
    $$\text { For one - one, } \\$$
    $$\qquad f\left(x_{1}\right)=f\left(x_{2}\right) \\$$
    $$\Rightarrow 6^{x_{1}}+6$$ &=$$6^{x_{2}}+$$
    $$\Rightarrow \quad 6^{x_{1}}=6^{x_{2}} \\$$
    $$\Rightarrow \quad x_{1}=x_{2}$$
    Therefore f is one - one.

    Now,
    $$\begin{aligned} f(x) &=y=6^{x}+6 \\ & \Rightarrow(y-6)=6^{x} \end{aligned}$$

    Taking log both side.
    $$\Rightarrow \log _{6}(y-6)=x$$

    Now,
    $$f\left(\log _{6}(y-6)\right)=6^{\log _{6}(y-6)}+6$$
    $$=y-6+6$$
    $$=y$$
    $$\therefore f \text { is onto }$$

    Hence, f is one - one and onto.

  • Question 8
    1 / -0

    Directions For Questions

    $$f:R \rightarrow R$$ defined by, $$f(x) = x^3 + x^2 f'(1) + x.f^n(2) + f^m(3)$$ for all $$x \in R$$

    ...view full instructions

    $$f(x)$$ is
  • Question 9
    1 / -0
    If $$fxln\left(1+\dfrac{1}{x}\right)dx=p(x)ln\left(1+\dfrac{1}{x}\right)+\dfrac{1}{2}x-\dfrac{1}{2}ln(1+x)+c$$, being arbitary costant, then
    Solution

  • Question 10
    1 / -0
    The domain of $$\frac{x+1}{\sqrt{x^{2}-5x+6}}$$ is
    Solution

    $$\dfrac{x+1}{\sqrt{x^{2}-5 x+6}}$$

    $$x^{2}-5 x+6>0$$

    $$x^{2}-3 x-2 x+6>0$$

    $$x(x-3)-2(x-3)>0$$

    $$(x-3)(x-2)>0$$

    $$x \in[-\infty, 2) \cup(3, \infty)$$

    Domain of

    $$x+1 \in R$$

     

    $$\therefore$$ Domain of $$\dfrac{x+1}{\sqrt{x^{2}-5 x+6}}$$ is $$R-(2,3)$$

    Option $$A=R-(2,3)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now