Self Studies

Functions Test 56

Result Self Studies

Functions Test 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the function $$f\left( x \right) ={ e }^{ x }$$ and $$g\left( x \right)=\sin ^{ -1 }{ x } $$, then which of the following is/are necessarily true.
    Solution

    $$\text { solution: } \quad f(x)=e^{x} \quad g(x)=\sin ^{-1}(x) \\$$

    $$\text { gof }=\sin ^{-1}\left(e^{x}\right) \\$$

    $$\therefore-1 \leqslant e^{x} \leqslant 1 \\$$

    $$\text { so we need } x \in(-\infty \text { o] } \\$$

    $$\text { domain of gof is }(-\infty, 0] \\$$

    $$\text { Range of gof is same as range of } g \\$$

    $$\text { Ansuer. : option (B) }$$

  • Question 2
    1 / -0
    If $$f(x)=\frac { \alpha x }{ x+1 } $$, where $$x\neq -1$$ and (fof) (x) = x, then $$\alpha =$$
    Solution

  • Question 3
    1 / -0
    Domain of function $$y=\sqrt{\log_{0.6}\left(\dfrac{x-1}{x+5}\right)}\cdot\dfrac{1}{(x^2-49)}$$ is?
    Solution
    $$ \begin{array}{l} \text { Solution - Given that, } \\ \qquad \begin{array}{c} y=\sqrt{\log _{0.6}\left(\frac{x-1}{x+5}\right)} \cdot \frac{1}{\left(x^{2}-49\right)} \\ x^{2}-49 \neq 0 \\ (x-7)(x+7) \neq 0 \\ x \neq 7,-7 \end{array} \\ \text { Now, } \\ \qquad \log _{0.6}\left(\frac{x-1}{x+5}\right) \geqslant 0 \end{array} $$

    $\begin{aligned} \Rightarrow & \frac{x-1}{x+5} \leqslant(0,6)^{0} \\ \Rightarrow \frac{x-1}{x+5} \leqslant 1 & \Rightarrow \frac{x-1}{x+5}-1 \leqslant 0 \\ \Rightarrow \frac{x-1-x-5}{x+5} \leqslant 0 & \\ \Rightarrow+\frac{6}{x+5} \geqslant 0 & \Rightarrow x+5>0 \\ \text { Also, for log to be defined, } \frac{x-1}{x+5}>0 \end{aligned}$ $$ \begin{array}{l} x \in(1,7) \cup(7, \infty) \\ \text { Hence, }(A) \text { is the correct option. } \end{array} $$

  • Question 4
    1 / -0
    Let N be the set of natural numbers and two functions f and g be defined as
    and g(n)=$$n-{ \left( -1 \right)  }^{ n }$$ then fog is:
    Solution

  • Question 5
    1 / -0
    let $$f:R\rightarrow R$$ be a function defined by $$f(x)=\frac { { x }^{ 2 }-3x+4 }{ { x }^{ 2 }+3x+4 }$$ then f is
    Solution

  • Question 6
    1 / -0
    $$f (x) = x^4 - 10x^3 + 35x^2 - 50x + c$$ is a constant. the number of real roots of . f (x) = 0 and 
    f'' (x) = 0 are respectively 
    Solution
    Given, $$f(x)=x^{4}-10 x^{3}+35 x^{2}-50 x+c$$
    Then $$, f^{\prime}(x)=\dfrac{d}{d x}\left(-10 x^{3}+x^{4}+35 x^{2}-50 x+c\right)$$
    $$\Rightarrow f^{\prime}(x)=4 x^{3}-30 x^{2}+70 x-50=0$$
    $$\therefore 2 x^{3}-15 x^{2}+35 x-25=0$$
    First, let us factorise $$f(x)=0$$
    $$\Rightarrow x^{4}-10 x^{3}+35 x^{2}-50 x+c=0$$
    $$\Rightarrow(x-1)\left(x^{3}-9 x^{2}+26 x-c\right)=0$$
    $$\Rightarrow(x-1)\left((x-2)\left(x^{2}-7 x+\dfrac{c}{2}\right)\right)=0$$
    $$\Rightarrow f(x)=(x-1)(x-2)(x-4)(x-3)$$
    Roots of $$f^{\prime}(x)=0$$
    $$\Rightarrow 2 x^{3}-15 x^{2}+35 x-25=0$$
    $$\Rightarrow f^{\prime}(x)$$ has 3 roots which are
    $$x=\dfrac{5}{2}, \dfrac{5+\sqrt{5}}{2}, \dfrac{-\sqrt{5}+5}{2}$$
    Hence $$(A)$$ is the correct option.
  • Question 7
    1 / -0
    The function $$f:R\rightarrow R$$ defined by $$f\left( x \right) =\frac { { e }^{ \left| x \right|  }-{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } $$ is
    Solution

  • Question 8
    1 / -0
    Let f(x+y)=f f(x) f(y) and  f(x) =1+x g(x) G(x), where $$\underset { x\rightarrow 0 }{ lim } g\left( x \right) =a and \underset { x\rightarrow 0 }{ lim } G\left( x \right) =b,$$ then f' (x) is equal to
    Solution

  • Question 9
    1 / -0
    $$f:N\rightarrow N\quad where\quad f\left( x \right) =x-{ (-1) }^{ x }$$, then 'f' is
    Solution

  • Question 10
    1 / -0
    Let (X) be a function satisfying f' (X) = f (X) with f (0) = 1 and g (X) be a function that satisfies f (X) + g (x) = $${ x }^{ 2 },$$ Then the value of the integral $$\int _{ 0 }^{ 1 }{ f } (x)\quad g\quad (x)\quad dx,\quad is$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now