Self Studies

Functions Test 57

Result Self Studies

Functions Test 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f:A\rightarrow B$$ will be an into function if

    Solution

  • Question 2
    1 / -0
    If f (x) = cosx and g (x) = x$$^2$$ then (gof) (x) is ....
    Solution

  • Question 3
    1 / -0
    Suppose that $$g(x)=1+\sqrt { x } and\quad f(g(x))=3+2\sqrt { x } +x\quad then\quad f(x)\quad is$$
    Solution

  • Question 4
    1 / -0
    Which one of the following is one-one?
  • Question 5
    1 / -0
    Let $$f:R\rightarrow R$$  defined by $$f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ -x^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,$$ then
    Solution

    $$\text { solution: } \quad f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}=\frac{\left(e^{x^{2}}\right)^{2}-1}{\left(e^{x^{2}}\right)^{2}+1} \\$$

    $$f^{\prime}(x)=\frac{\left\{\left(e^{x^{2}}\right)^{2}+1\right\}\left\{4 x\left(e^{x^{2}}\right)\right\}-\left\{\left(e^{x^{2}}\right)^{2}-1\right\}\left\{4 x\left(e^{x^{2}}\right)\right\}}{\left(\left(e^{x^{2}}\right)^{2}+1\right)^{2}} \\$$

    $$\text { Since } f^{\prime}(x) \text { is nither positive, nor negative } \\$$

    $$\text { for all } x \text { so } f(x) \text { is not one - one function } \\$$

    $$\qquad f(x)=\frac{\left(e^{x^{2}}\right)^{2}-1}{\left(e^{x^{2}}\right)^{2}+1}$$

    Range of $$f(x)$$ is $$[0,1 )$$

    since Range of $$f(x)$$ is not equal to co-domain

    of $$f(x)$$ so $$f(x)$$ is not onto function.

    Answer: option: (B)
  • Question 6
    1 / -0
    The domain of derivative of the function $$f\left( x \right) = \left| {{{\sin }^{ - 1}}\left( {2{x^2} - 1} \right)} \right|$$ is:

    Solution

  • Question 7
    1 / -0
    Let $$f:R\rightarrow R$$, be defined as $$f(x)={ e }^{ x^{ 2 } }+cosx$$ then f is
    Solution

  • Question 8
    1 / -0
    If the mapping $$  f(x)=a x+b, a<0  $$ maps $$ [-1,1]  $$ onto $$ [0,2],  $$ then for all values of $$  \theta, A=\cos ^{2} \theta+\sin ^{4} \theta  $$ is such that
    Solution

  • Question 9
    1 / -0
    l qt f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g be the function satisfying f(x)+g(x)=$$X^{2}$$, the value of the integral $$\int _{ 0 }^{ 1 }{ f(x)g(x)\quad dx\quad is } $$
    Solution

  • Question 10
    1 / -0
    $$f : R \rightarrow R$$  defined by  $$f ( x ) = \dfrac { x } { x ^ { 2 } + 1 } , \forall x \in R$$  is
    Solution
    $$\begin{aligned} f(x) &=\dfrac{x}{1+x^{2}} \\-f(4)=& \dfrac{4}{1+16}=\dfrac{4}{17} \\ f\left(\dfrac{1}{4}\right) &=\frac{\dfrac{1}{4}}{1+\dfrac{1}{16}}=\dfrac{4}{17} \end{aligned}$$
    Hence two different input has Same output $$\cdot$$ so not one-one
    $$f(x)=y$$
    $$y=\dfrac{x}{1+x^{2}}=1 \quad y+y x^{2}-x=0$$
    $$x=\dfrac{1 \pm \sqrt{1-4 y^{2}}}{2 y}$$
    $$1-4 y^{2} \geq 0$$
    $$(1+2 y)(1-x y) \geq 0$$
    $$\dfrac{1}{-3} \leq y<\dfrac{1}{2}$$
    Range of $$f(x)$$ is $$\left[\dfrac{-1}{2}, \dfrac{1}{2}\right]$$
    Range of $$f(x) \neq$$ codomain $$f(x)$$ Hence f(x) is neither one-one nor onto option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now