Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    State which of the following defines a mapping from A to B, if $$A={a,b,c,}$$ and $$B={x,y,z}.$$

  • Question 2
    1 / -0

    If  $$f ( x ) = \sqrt { x ^ { 2 } + 1 } , g ( x ) = \dfrac { x + 1 } { x ^ { 2 } + 1 }$$  and  $$h ( x ) = 2 x - 3 ,$$  then  $$f ^ { \prime } \left( h ^ { \prime } \left( g ^ { \prime } ( x ) \right) =\right.$$

  • Question 3
    1 / -0

    $${ f }:{ R }\rightarrow { R }$$  where  $$f ( x ) = \dfrac { x ^ { 2 } + a x + 1 } { x ^ { 2 } + x + 1 }.$$  Complete set of values of  $$'a'$$  such that  $$f ( x )$$  is onto to is :

  • Question 4
    1 / -0

    The domain of $$f(x) = \sin^{-1} log_2 (x^2/2)$$ is

  • Question 5
    1 / -0

    The number of integral values of  $$x$$  in the domain of function  $$f$$  defined as  $$f(x)=\sqrt { \ln { | } \ln { | } x|| } +\sqrt { 7|x|-|x|^{ { 2 } }-10 } $$  is :

  • Question 6
    1 / -0

    The domain and the range of $$f(x) = \cos^{-1} \sqrt {\log_{[x]} \left (\dfrac {|x|}{x}\right )}$$, where $$[\cdot ]$$ denotes the greatest integer function, are respectively.

  • Question 7
    1 / -0

    Choose correct answer (s) from given choice
    If f(x) = x + 4, g (x) = 5x and h(x) = 12/x. Find the value of $${ f }^{ -1 }(g(h(6)))$$ 

  • Question 8
    1 / -0

    If f(x)=x+tanx and g(x) is inverse of f(x) then g'(x) is equal to 

  • Question 9
    1 / -0

    The domain of $$f(x)=\sqrt { -x^2 }$$ is 

  • Question 10
    1 / -0

    For the function $$F(x)=\sqrt { { 4-x }^{ 2 } } +\sqrt { { x }^{ 2 }-1 } $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now