Self Studies

Functions Test 58

Result Self Studies

Functions Test 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    State which of the following defines a mapping from A to B, if $$A={a,b,c,}$$ and $$B={x,y,z}.$$
  • Question 2
    1 / -0
    If  $$f ( x ) = \sqrt { x ^ { 2 } + 1 } , g ( x ) = \dfrac { x + 1 } { x ^ { 2 } + 1 }$$  and  $$h ( x ) = 2 x - 3 ,$$  then  $$f ^ { \prime } \left( h ^ { \prime } \left( g ^ { \prime } ( x ) \right) =\right.$$
    Solution

  • Question 3
    1 / -0
    $${ f }:{ R }\rightarrow { R }$$  where  $$f ( x ) = \dfrac { x ^ { 2 } + a x + 1 } { x ^ { 2 } + x + 1 }.$$  Complete set of values of  $$'a'$$  such that  $$f ( x )$$  is onto to is :
    Solution
    $$f(x)=\dfrac{x^{2}+a x+1}{x^{2}+x+1}$$
    $$f: R \rightarrow R$$
    domain co-domain
    $$D\left(x^{2}+x+1\right)=-3<0$$
    Hence $$x^{2}+x+1$$ is always positive
    $$x^{2}+a x+1$$ coefficient of $$x^{2}=1>0$$
    $$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow \infty} \dfrac{x^{2}+a x+1}{x^{2}+x+1} \dfrac{\infty}{\infty}$$ form
    $$=\lim _{x \rightarrow 0} \dfrac{x^{2}\left(1+\dfrac{a}{x}+\dfrac{1}{x^{2}}\right)}{x^{2}\left(1+\frac{1}{x}+\dfrac{1}{x^{2}}\right)}=\dfrac{1+0+0}{1+0+0}=1$$
    similarly
    $$lim_{x\rightarrow-\infty} f(x)=1$$
    Hence $$f(x)$$ is bounded
    Range $$\neq R$$
    $$\neq$$ co-domain
    $$f(x)$$ cannot be onto for any value of $${a}$$
    option $$D$$ is correct.
  • Question 4
    1 / -0
    The domain of $$f(x) = \sin^{-1} log_2 (x^2/2)$$ is
    Solution

  • Question 5
    1 / -0
    The number of integral values of  $$x$$  in the domain of function  $$f$$  defined as  $$f(x)=\sqrt { \ln { | } \ln { | } x|| } +\sqrt { 7|x|-|x|^{ { 2 } }-10 } $$  is :
    Solution

  • Question 6
    1 / -0
    The domain and the range of $$f(x) = \cos^{-1} \sqrt {\log_{[x]} \left (\dfrac {|x|}{x}\right )}$$, where $$[\cdot ]$$ denotes the greatest integer function, are respectively.
    Solution

  • Question 7
    1 / -0
    Choose correct answer (s) from given choice
    If f(x) = x + 4, g (x) = 5x and h(x) = 12/x. Find the value of $${ f }^{ -1 }(g(h(6)))$$ 
  • Question 8
    1 / -0
    If f(x)=x+tanx and g(x) is inverse of f(x) then g'(x) is equal to 
  • Question 9
    1 / -0
    The domain of $$f(x)=\sqrt { -x^2 }$$ is 
  • Question 10
    1 / -0
    For the function $$F(x)=\sqrt { { 4-x }^{ 2 } } +\sqrt { { x }^{ 2 }-1 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now