Self Studies

Functions Test 6

Result Self Studies

Functions Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=x, g(x)=2x^{2}+1$$ and $$h(x)=x+1$$  then  $$(hogof)(x)$$ is equal to
    Solution
    Given  $$f(x)=x, g(x)=2x^{2}+1$$ and $$h(x)=x+1$$

    $$hogof(x)$$

    $$=h(g(f(x)))$$
    $$=h\left ( g\left ( x \right ) \right )\dots\dots \left[ \because f\left ( x \right )=x \right ]$$
    $$=h\left ( 2x^{2}+1 \right )\dots\dots\left [ \because g\left ( x \right )=2x^{2}+1 \right ]$$
    $$=2x^{2}+1+1$$
    $$=2x^2+2$$
    $$=2\left (x ^{2} +1\right )$$

    $$\therefore hogof(x)=2(x^2+1)$$
  • Question 2
    1 / -0
    The domain of $$f(x) =\displaystyle \frac{1}{\left | x \right |+x}$$ is
    Solution
    For $$f$$ to be defined
    $$\left | x \right |+x\neq 0$$
    $$\Rightarrow \left | x \right |\neq -x$$
    $$\Rightarrow x>0.$$
    $$\therefore x\in \left ( 0,\infty  \right )$$
  • Question 3
    1 / -0
    The domain of $$f(x)=\sqrt{1-\left | x \right |}$$ is
    Solution
    $$1-\left | x \right |\geqslant 0$$
    $$\Rightarrow \left | x \right |\leqslant 1$$
    $$\Rightarrow -1\leq x \leq 1$$
    $$\Rightarrow x\in \left [ -1,1 \right ]$$
  • Question 4
    1 / -0
    If $$f(x)=(1-x)^{1/2}$$ and $$g(x)= \ln(x)$$  then  the  domain  of $$(gof)(x)$$ is
    Solution
    Given $$f(x)=(1-x)^{\frac{1}{2}}$$ and $$g(x)=ln(x)$$

    $$gof(x)$$
    $$=g(f(x))$$
    $$=\ln\left ( 1-x \right )^{1/2}$$
    $$=\dfrac{1}{2}\ln\left ( 1-x \right )$$
    $$\therefore$$ For the composite function to be defined $$1-x>0$$
    $$x<1$$
    $$\therefore$$ Domain is $$\left ( -\infty ,1 \right )$$
  • Question 5
    1 / -0
    The domain of $$f(x) = \displaystyle \frac{1}{\log\left | x \right |}$$ is
    Solution
    For $$f$$ to be defined,
    $$\left | x \right |>0$$
    $$\left | x \right |\neq 1$$  as $$\left | \log 1\right |=0$$
    $$\therefore x\notin \left \{ -1,0,1 \right \}$$
    $$\therefore x\in R-\left \{ -1,0,1 \right \}$$
  • Question 6
    1 / -0
    The domain of $$f(x)=\sin^{-1}(3x)$$ is
    Solution
    $$\sin  ^{-1}y  $$ is  defined  for $$ y\in \left [ -1,1 \right ]$$

    $$\therefore\sin  ^{-1}3x $$ is  defined  for  $$3x\in \left [ -1,1 \right ]$$

    $$\Rightarrow -1\leq 3x \leq 1$$

    $$\Rightarrow \dfrac{-1}{3}\leq x \leq \dfrac{1}{3}$$

    $$x\in \left [ \dfrac{-1}{3},\dfrac{1}{3} \right ] $$
  • Question 7
    1 / -0
    The domain of $$f(x)= \displaystyle \frac{1}{\sqrt{x^{2}-4}} $$ is
    Solution
    Given $$\displaystyle f(x)=\int \dfrac{1}{\sqrt{x^2-4}}$$

    for $$f(x)$$ to be defined denominator $$\sqrt{x^2-4}>0$$

    $$x^{2}-4> 0$$

    $$\left ( x-2 \right )\left ( x+2 \right )> 0$$

    $$\Rightarrow x\in \left ( -\infty ,-2 \right ) \cup \left ( 2,\infty  \right )$$ as $$(x-2)$$ and $$(x+2)$$  should have same sign always

  • Question 8
    1 / -0
    The domain of $$ f(x) =\dfrac{1}{\sqrt{x^{2}+2x+9}}$$ is
    Solution

    For $$g(x)=x^{2}+2x+9$$, $$a >0$$
    Hence for $$g(x) >0$$, $$D <0$$

    $$D= b^{2}-4ac=4-4\left ( 9 \right )=-27<0.$$
    $$\therefore$$ $$f$$  is  defined  for  all  $$x  \in   (-\infty ,\infty )$$

  • Question 9
    1 / -0
    The domain of $$\cosh^{-1} 5x $$ is
    Solution
    $$\cosh ^{-1}x=\log \left [ x+\sqrt{x^{2}-1} \right ]$$
    $$\cosh ^{-1}5x$$$$=\dfrac{1}{5}\log \left [ x+\sqrt{x^{2}-1} \right ]$$
    Range of $$\log$$ is from $$1$$ to 
    $$\infty  $$ as $$ x>0 $$  for  $$\cosh^{-1}x$$ to be defined
    $$\therefore$$  range is  $$=\left [ \dfrac{1}{5},\infty  \right ]$$
  • Question 10
    1 / -0
    The domain of $$\log_{a} \sin^{-1}x$$  is $$(a>0,a\neq 1)$$
    Solution
    $$\sin ^{-1}x>0$$ $$\Rightarrow x\in \left ( 0,1 \right ]$$
    $$\therefore$$   domain  is $$ (0,1]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now