Self Studies

Tangents and its Equations Test 14

Result Self Studies

Tangents and its Equations Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $$y= \sqrt {4-x^2}$$ at the point where the ordinate and the abscissa are equal is
    Solution
    Given equation of curve is $$y= \sqrt {4-x^2}$$
    $$y^{2}=4-x^{2}$$
    $$\displaystyle \Rightarrow \frac{dy}{dx}=-\frac{x}{y}$$
    Let $$P(x_1,y_1)$$ be the point on the curve such that $$x_1=y_1$$
    So, slope of tangent to curve at P is  $$-1$$.
  • Question 2
    1 / -0
    The curve given by $$x+y=e^{xy}$$ has a tangent parallel to the y-axis at the point
    Solution
    Given equation of curve is $$x+y=e^{xy}$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{y-1}{1-xe^{xy}}$$
    Since, the tangent is parallel to y-axis,
    $$\displaystyle\frac{dy}{dx}=\frac{1}{0}$$
    $$\Rightarrow xe^{xy}=1$$
    Also, $$y=0$$ on the line parallel to y-axis
    $$\Rightarrow x=1$$
    Hence, the required point is (1,0)
  • Question 3
    1 / -0
    If the parabola $$y = ax^2 - 6x + b$$ passes through $$(0, 2)$$ and has its tangent at $$x = \dfrac{3}{2}$$ parallel to the $$x-$$axis then
    Solution
    Given equation of parabola is
    $$y = ax^2 - 6x + b$$
    Since it passes through $$(0, 2)$$
     $$2 = 0 + b$$
    $$\Rightarrow   b = 2$$
    Also, $$\displaystyle \frac{dy}{dx} = 2 ax - 6$$
    So, slope of tangent at $$\displaystyle (x=\frac {3}{2}) = 2a \left ( \frac{3}{2} \right ) - 6$$
                    $$= 3a - 6 $$ 
    Since the tangent at $$x=\dfrac{3}{2}$$ is parallel to $$x-$$axis
    $$\Rightarrow 3a-6=0$$
    $$\Rightarrow     a = 2$$
    Hence, $$ a=2,b=2$$
  • Question 4
    1 / -0
    The normal to the curve $$2x^2 +y^2=12$$  at the point $$(2,2)$$ cuts the curve again at
    Solution
    Given equation of curve is 
    $$2x^2 +y^2=12$$
    $$\dfrac{dy}{dx}=-\dfrac{2x}{y}$$
    Slope of tangent at (2,2) is -2.
    Slope of normal at (2,2) is $$\displaystyle\dfrac{1}{2}$$
    Equation of normal at (2,2) is 
    $$y-2=\dfrac{1}{2}(x-2)$$
    $$\Rightarrow 2y-x=2$$
    Here , we can solve by checking options.
    So ,option A satisfies above equation.
    Hence $$(-\dfrac{22}{9},-\dfrac{2}{9})$$ is the required point.
  • Question 5
    1 / -0
    At what points of curve $$y= \displaystyle \frac {2}{3} x^3 + \displaystyle \frac{1}{2} x^2 $$, the tangent makes equal angle with the axis
    Solution
    Given equation of curve is 
    $$y= \dfrac {2}{3} x^3 + \dfrac{1}{2} x^2 $$
    $$\dfrac{dy}{dx}=2x^{2}+x$$
    Since ,the tangent makes equal angle with x-axis,
    $$\dfrac{dy}{dx}=1$$
    $$\Rightarrow 2x^{2}+x-1=0$$
    $$\Rightarrow x=-1,\dfrac{1}{2}$$
    At $$ x=-1\Rightarrow y=-\dfrac{1}{6}$$
    At $$ x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{24}$$
  • Question 6
    1 / -0
    If $$x+ 4y=14$$ is a normal to the curve $$y^2=\alpha x ^3-\beta $$ at $$(2,3)$$, then the value of $$\alpha+\beta$$ is
    Solution
    Given equation of curve is 
    $$y^2=\alpha x ^3-\beta $$
    Since, it passes through (2,3) 
    $$4=8\alpha -\beta$$
    $$\displaystyle \frac{dy}{dx}=\frac{3\alpha x^2}{2y}$$
    Slope of tangent at (2,3) is $$2\alpha$$
    Slope of normal  at $$\displaystyle (2,3)= -\frac{1}{2\alpha}$$
    Given equation of normal is $$x+4y=14$$
    Slope of normal is $$-\cfrac{1}{4}$$
    $$\Rightarrow \alpha =2$$
    $$\Rightarrow \beta=7$$
    Hence $$\alpha+\beta =9$$
  • Question 7
    1 / -0
    If a variable tangent to the curve $$x^2y=c^3$$ makes intercepts $$a , b$$ on $$X$$-axes and $$Y$$- axes, respectively, then the value of $$a^2b$$ is
    Solution
    Let a variable point$$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$  on the curve $${ x }^{ 2 }y={ c }^{ 3 }$$
    Then slope $$\displaystyle\frac { dy }{ dx } =-\frac { 2{ y }_{ 1 } }{ { x }_{ 1 } } $$
    So, equation of tangent is
    $$\displaystyle y-{ y }_{ 1 }=-\frac { 2{ y }_{ 1 } }{ { x }_{ 1 } } \left( x-{ x }_{ 1 } \right) $$
    $$\Rightarrow y{ x }_{ 1 }-2x{ y }_{ 1 }=3{ x }_{ 1 }{ y }_{ 1 }$$
    Using $${ { x }_{ 1 } }^{ 2 }{ y }_{ 1 }={ c }^{ 3 }$$
    Equation of tangent becomes $$\displaystyle y{ x }_{ 1 }^{ 2 }+\frac { 2{ c }^{ 3 }x }{ { x }_{ 1 } } =3{ c }^{ 3 }$$
    Therefore, X intercept is $$\displaystyle a=\frac { 3{ x }_{ 1 } }{ 2 } $$ 
    And Y intercept is $$\displaystyle b=\frac { 3{ c }^{ 3 } }{ { { x }_{ 1 } }^{ 2 } } $$
    Now $$\displaystyle { a }^{ 2 }b={ \left( \frac { 3{ x }_{ 1 } }{ 2 }  \right)  }^{ 2 }\left( \frac { 3{ c }^{ 3 } }{ { { x }_{ 1 } }^{ 2 } }  \right) =\frac { 27{ c }^{ 3 } }{ 4 } $$
    Hence, option 'C' is correct.
  • Question 8
    1 / -0
    The equation of the tangent to the curve $$y=be^{-x/a}$$ at the point where it crosses the $$y$$-axis is
    Solution
    Given equation of curve is 
    $$y=be^{-x/a}$$
    Let $$P(0,y_1)$$ be the point where tangent to curve crosses y-axis .
    $$\Rightarrow y_1=b$$
    So, the point P is (0,b)
    $$\dfrac{dy}{dx}=-\dfrac{y}{a}$$
    Slope of tangent at P(0,b) is $$-\dfrac{b}{a}$$
    Equation of tangent through P(0,b) is 
    $$y-b=-\dfrac{b}{a}(x-0)$$
    $$\Rightarrow bx+ay=ab$$
    $$\dfrac {x}{a}+\dfrac{y}{b} =1$$
  • Question 9
    1 / -0
    The point(s) at each of which the tangents to the curve $$\displaystyle y = x^3 - 3x^2 - 7x + 6$$ cut off on the positive semi axis $$OX$$ a line segment half that on the negative semi axis $$OY$$, then the co-ordinates of the point(s) is/are give by:
    Solution
    $$y={ x }^{ 3 }-3{ x }^{ 2 }-7x+6\\ \dfrac { dy }{ dx } =3{ x }^{ 2 }-6x-7$$
    Let coordinate of X be $$\left( a,0 \right) $$ then coordinate of Y is $$\left( 0,-2a \right) $$
    Therefore slope of XY is $$\cfrac { 0+2a }{ a-0 } =2$$
    Equating slope $$3{ x }^{ 2 }-6x-7=2\\ 3{ x }^{ 2 }-6x-9=0$$
    Solving we get
    $$x=-1,y=9\quad \\ x=3,y=-15$$
    Hence, option 'B' is correct.
  • Question 10
    1 / -0
    A line L is perpendicular to the curve $$\displaystyle  y = \dfrac {x^2}{4} - 2$$ at its point P and passes through (10, -1). The coordinates of the point P are
    Solution
    Let point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ on curve $$ y=\cfrac { { x }^{ 2 } }{ 4 } -2$$
    Slope of tangent is $$\dfrac { dy }{ dx } =\dfrac { { x }_{ 1 } }{ 2 } $$
    So slope of perpendicular line is $$-\dfrac { 2 }{ { x }_{ 1 } } $$  ...(1)
    That perpendicular line also passes through $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$\left( 10,-1 \right) $$
    Slope of line from these point is $$\dfrac { { y }_{ 1 }+1 }{ { x }_{ 1 }-10 } $$  ...(2)
    Equating (1) and (2) and solving we get,
    $${ x }_{ 1 }=4$$ and  $${ y }_{ 1 }=2$$
    Thus point is $$\left( 4,2 \right) $$
    Hence, option 'D' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now