Self Studies

Tangents and its Equations Test 16

Result Self Studies

Tangents and its Equations Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the locus $$y=\cos^{-1}\left ( \cos x \right )$$ at $$x=\displaystyle \frac{\pi }{4}$$ is
    Solution
    For $$x=\cfrac { \pi  }{ 4 } \quad y=\cos^{ -1 }\cos\left( \cfrac { \pi  }{ 4 }  \right) =\cfrac { \pi  }{ 4 } $$
    Therefore point is $$\left( \cfrac { \pi  }{ 4 } ,\cfrac { \pi  }{ 4 }  \right) $$
    Now $$y=\cos^{ -1 }\cos\left( x \right) \Rightarrow \cos\left( y \right) =\cos\left( x \right) $$
    Slope is $$\cfrac { dy }{ dx } =\cfrac { -\sin\left( x \right)  }{ -\sin\left( y \right)  } =1$$
  • Question 2
    1 / -0
    $$P(2, 2)$$ and $$Q\left ( \displaystyle \frac{1}{2}, -1 \right )$$ are two points on the parabola $$y^{2}=2x$$. The coordinates of the point $$R$$ on the parabola, where tangent to the curve is parallel to the chord $$PQ$$ is
    Solution
    Let point $$\left( 2{ t }^{ 2 },2t \right) $$ lies on curve $${ y }^{ 2 }=2x$$ 
    Then slope is $$\displaystyle\dfrac { dy }{ dx } =\dfrac { 2 }{ 2y } =\dfrac { 1 }{ 2t } $$
    And this slope is equal to the the slope of line $$PQ =\displaystyle\dfrac { -1-2 }{ \dfrac { 1 }{ 2 } -2 } =2$$
    Equating slope we get $$\displaystyle t=\dfrac { 1 }{ 4 } $$
    Hence point is $$\displaystyle\left( \dfrac { 1 }{ 8 } ,\dfrac { 1 }{ 2 }  \right) $$
  • Question 3
    1 / -0
    The number of tangents to the curve $$y^{2}-2x^{3}-4y+8=0$$ that pass through $$(1, 0)$$ is
    Solution
    Point $$(0,1)$$ doesn't lie on curve, so let $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is point of contact
    Therefore slope of $${ y }^{ 2 }-2{ x }^{ 3 }-4y+8=0$$ is
    $$\cfrac { dy }{ dx } =\cfrac { 6{ x }^{ 2 } }{ 2y-4 } =\cfrac { 6{ x }_{ 1 }^{ 2 } }{ 2{ y }_{ 1 }-2 } $$
    And slope of line trough $$\left( 1,0 \right) $$ and $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is $$\\ \cfrac { 0-{ y }_{ 1 } }{ 1-{ x }_{ 1 } } $$
    Equating slopes we get $$6{ x }_{ 1 }^{ 2 }-6{ x }_{ 1 }^{ 3 }=-2{ y }_{ 1 }^{ 2 }-4{ y }_{ 1 }$$
    And on solving it with equation of curve we get a quadratic equation. That give two values of slope of tangent.
    Hence 2 tangents is possible.
  • Question 4
    1 / -0
    The curve given by $$x+y=e^{xy}$$ has a tangent as the $$y$$-axis at the point
    Solution
    We have,  $$x+y=e^{xy}\Rightarrow (1)$$
    Differentiate both sides w.r.t. $$x$$ we get,
    $$1+\dfrac{dy}{dx}=e^{xy}(y+x\dfrac{dy}{dx})$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{ye^{xy}-1}{1-xe^{xy}}$$
    Now for tangent to be y-axis, $$\left|\dfrac{dy}{dx}\right|\to \infty$$
    $$\Rightarrow 1-xe^{xy}=0\Rightarrow (2)$$
    Solving (1) and (2) we get, $$(x,y)=(1,0)$$, which is the required point
  • Question 5
    1 / -0
    Let $$\displaystyle f(x)=e\:^{x}\sin x$$ be the equation of a curve. If at $$\displaystyle x=a,0\leq a\leq 2\pi$$, the slope of the tangent is the maximum then the value of $$a$$ is 
    Solution
    Let $$y={ e }^{ x }sin\left( x \right) $$
    Slope is $$\cfrac { dy }{ dx } ={ e }^{ x }\left( sin\left( x \right) +cos\left( x \right)  \right) $$
    To maximize slope
    $$\cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } ={ 2e }^{ x }cos\left( x \right) =0$$
    Critical point is $$x=\cfrac { \pi  }{ 2 } $$
    And at $$x=\cfrac { \pi  }{ 2 } $$ is the point of maxima
  • Question 6
    1 / -0
    The equation of tangent to the curve $$y=e^{-\left | x \right |}$$ at the point where the curve cuts the line $$x=1$$ is
    Solution
    Substituting $$x=1$$ in $$y={ e }^{ -\left| x \right|  }$$, we get $$y=\cfrac { 1 }{ e } $$
    Slope at point $$\left( 1,\cfrac { 1 }{ e }  \right) $$ is 
    $$\cfrac { dy }{ dx } =-\cfrac { 1 }{ e } $$
    Hence equation of tangent is 
    $$y-\cfrac { 1 }{ e } =-\cfrac { 1 }{ e } (x-1)\\ ey+x=2$$

  • Question 7
    1 / -0
    The equation of the curve is given by $$x=e^{t}\sin t$$, $$y=e^{t}\cos t$$. The inclination of the tangent to the curve at the point $$t=\displaystyle \frac{\pi }{4}$$ is
    Solution

    $$dx=e^{t}(\cos t+\sin t).dt$$
    $$dy=e^{t}[\cos t-\sin t).dt$$
    Hence
    $$\dfrac{dy}{dx}_{t=\tfrac{\pi}{4}}$$

    $$=\dfrac{\cos t-\sin t}{\cos t+\sin t}_{t=\tfrac{\pi}{4}}$$

    $$=0$$

  • Question 8
    1 / -0
    If the curve $$y=ax^3+bx^2+cx$$ is inclined at $$45^0$$ to the x-axis at $$(0,0)$$ but it touches the x-axis at $$(1,0)$$ then the value of $$a,b$$ and $$c$$ are given by
    Solution
    $$\displaystyle \frac { dy }{ dx } =3a{ x }^{ 2 }+2bx+c$$ (given)
    At $$\displaystyle \left( 0,0 \right) ,\frac { dy }{ dx } =c=\tan { { 45 }^{ 0 } } =1\Rightarrow c=1$$
    At $$\displaystyle \left( 1,0 \right) ,\frac { dy }{ dx } =3a+2b+c$$
    Tangent at $$(1,0)$$ is $$y-0=(3a+2b+c).(x-1)$$
    This is x-axis if $$3a+2b+c=0$$
    which is true if $$a=1,b=-2$$
    Hence $$a=1,b=-2,c=1$$
  • Question 9
    1 / -0
    The point on the curve $$\sqrt{x}+\sqrt{y}=2a^{2}$$, where the tangent is equally inclined to the axes, is
    Solution
    $$y=x$$ is the equation of line as it is equally inclined to axes
    So let point $$(k,k)$$ is the point of tangency 
    Therefore, $$\sqrt { k } +\sqrt { k } =2{ a }^{ 2 }\\ k={ a }^{ 4 }$$
    Hence point is $$\left( { a }^{ 4 },{ a }^{ 4 } \right) $$
  • Question 10
    1 / -0
    The angle between two tangents to the ellipse $$\displaystyle \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$ at the points where the line $$y=1$$ cuts the curve is
    Solution
    Substituting $$y=1$$ in $$\cfrac { { x }^{ 2 } }{ 16 } +\cfrac { { y }^{ 2 } }{ 9 } =1$$
    We get $$x=\pm \cfrac { 8\sqrt { 2 }  }{ 3 } $$
    And slope of tangents $$\cfrac { dy }{ dx } =\cfrac { 9x }{ 16y } =m_{1}, m_{2} =\pm \cfrac { 3\sqrt { 2 }  }{ 2 } $$
    Therefore $$tan\left( \theta  \right) =\dfrac{m_{1}-m_{2}}{1+m_{1}m_{2}}=\left| -\cfrac { 6\sqrt { 2 }  }{ 7 }  \right| \Rightarrow \theta ={ tan }^{ -1 }\left( \cfrac { 6\sqrt { 2 }  }{ 7 }  \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now