Self Studies

Tangents and it...

TIME LEFT -
  • Question 1
    1 / -0

    The curve $$y+e^{xy}+x= 0$$ has a tangent parellel to y-axis at a point

  • Question 2
    1 / -0

    The tangent to the curve $$\displaystyle y=e^{x}$$ drawn at the point $$\displaystyle \left ( c, e^{c} \right )$$ intersects the line joining the points $$\displaystyle \left ( c-1, e^{c-1} \right )$$$$\displaystyle \left ( c+1, e^{c+1} \right )$$

  • Question 3
    1 / -0

    The normal to the curve $$x=a\left ( 1-\cos \theta  \right )$$, $$y=a\sin \theta $$ at $$\theta $$ always passes through the fixed point

  • Question 4
    1 / -0

    If the normal to the curve $$\displaystyle y= f\left ( x \right )$$ at the point $$\displaystyle \left ( 3, 4 \right )$$ makes an angle $$\displaystyle \frac{3\pi}{4}$$ with the positive x-axis then $$\displaystyle f'\left ( 3 \right )$$ is equal to

  • Question 5
    1 / -0

    If the tangent at P  on the curve $$\displaystyle x^{m}y^{n}=a^{m+n}$$ meets the co-ordinates axes at A and B, then $$AP: PB= $$

  • Question 6
    1 / -0

    Find the equation of the tangent to the curve at any point $$(X, Y)$$.

    $$\displaystyle \frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1.$$

  • Question 7
    1 / -0

    For the equation $$\displaystyle x^{2/3}+y^{2/3}=a^{2/3}$$, find the equation of tangent at the point $$\displaystyle x=a\sin ^{3}\theta, y=a\cos ^{3} \theta$$.

  • Question 8
    1 / -0

    Find the condition that the line $$\displaystyle Ax+By= 1$$ may be a normal to the curve $$\displaystyle a^{n-1}y=x^{n}.$$

  • Question 9
    1 / -0

    What are the tangent and normal to the curve $$x=\displaystyle \frac{2at^{2}}{1+t^{2}}$$, $$ y= \displaystyle \frac{2at^{3}}{a+t^{2}}$$ at the point for which $$\displaystyle t=\frac{1}{2}$$

  • Question 10
    1 / -0

    Normal to the curve $$y=\displaystyle x^{3}-2x^{2}+4$$ at the point where $$x=2$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now