Self Studies

Tangents and its Equations Test 18

Result Self Studies

Tangents and its Equations Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The curve $$y+e^{xy}+x= 0$$ has a tangent parellel to y-axis at a point
    Solution
    $$\dfrac{dy}{dx}+e^{xy}[x\dfrac{dy}{dx}+y]+1=0$$
    Or 
    $$\dfrac{dy}{dx}[1+x.e^{xy}]+1+y.e^{xy}=0$$
    Or 
    $$\dfrac{dy}{dx}=\dfrac{-(1+y.e^{xy})}{1+x.e^{xy}}$$
    Now 
    $$1+xe^{xy}=0$$ since the slope of the tangent is $$90^{0}$$.
    Hence
    $$xe^{xy}=-1$$
    Or 
    $$x(-x-y)=-1$$
    Or 
    $$x^{2}+xy=1$$
    Or 
    $$y=\dfrac{1-x^{2}}{x}$$
    Or 
    $$y=\dfrac{1}{x}-x$$ ...(i)
    Considering $$y=0$$,
    $$x^{2}=1$$
    $$x=\pm1$$.
    Hence we get 2 points $$(1,0)$$ and $$(-1,0)$$.
    Out of these 2, only $$(-1,0)$$ lies on the curve.
    Hence the required point is $$(-1,0)$$.
  • Question 2
    1 / -0
    The tangent to the curve $$\displaystyle y=e^{x}$$ drawn at the point $$\displaystyle \left ( c, e^{c} \right )$$ intersects the line joining the points $$\displaystyle \left ( c-1, e^{c-1} \right )$$$$\displaystyle \left ( c+1, e^{c+1} \right )$$
    Solution
    Equation of straight line joining $$ A\left( c+1,{ e }^{ c+1 } \right) $$ and $$B\left( c-1,{ e }^{ c-1 } \right) $$ is 
    $$\displaystyle y-{ e }^{ c+1 }=\dfrac { { e }^{ c+1 }-{ e }^{ c-1 } }{ 2 } \left( x-c-1 \right)  $$  (1)
    Equation of tangent at $$ \left( c,{ e }^{ c } \right) $$ is $$ y-{ e }^{ c }={ e }^{ c }\left( x-c \right) $$   (2)
    Subtracting (1) from (2),we get 
    $$ \displaystyle { e }^{ c }\left( e-1 \right) ={ e }^{ c }\left[ \left( x-c \right) -\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right) \left( x-c \right) +\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right)  \right]  $$
    $$ \displaystyle \Rightarrow \dfrac { 1 }{ 2 } \left( e+{ e }^{ -1 } \right) -1=\left( x-c \right) \left[ 1-\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right)  \right]  $$
    $$ \displaystyle \Rightarrow x-c=\dfrac { e+{ e }^{ -1 }-2 }{ 2-e+{ e }^{ -1 } } <0 $$
    [$$\because e+{ e }^{ -1 }>2$$ and $$2+{ e }^{ -1 }-e<0$$]
    $$\Rightarrow x<c $$
    Thus the two lines meet to the left of $$ x=c $$ 
  • Question 3
    1 / -0
    The normal to the curve $$x=a\left ( 1-\cos \theta  \right )$$, $$y=a\sin \theta $$ at $$\theta $$ always passes through the fixed point
    Solution

    $$dx=a\sin \theta.d\theta$$
    $$dy=a\cos \theta.d\theta$$
    Or 
    $$\dfrac{-dx}{dy}=-\tan\theta$$.
    Thus
    Equation of normal will be 
    $$y-a\sin \theta=-\tan\theta(x-a+a\cos \theta)$$
    Or 
    $$\cos \theta.y-a\sin \theta.\cos \theta=-x\sin \theta+a\sin \theta-a\sin \theta \cos \theta$$
    $$\cos \theta.y+\sin \theta.x=a\sin \theta$$ 
    Hence it passes through the fixed point $$(a,0)$$.

  • Question 4
    1 / -0
    If the normal to the curve $$\displaystyle y= f\left ( x \right )$$ at the point $$\displaystyle \left ( 3, 4 \right )$$ makes an angle $$\displaystyle \frac{3\pi}{4}$$ with the positive x-axis then $$\displaystyle f'\left ( 3 \right )$$ is equal to
    Solution
    Slope of normal
    $$=\dfrac{-1}{f'(x)}$$
    $$=tan(\dfrac{3\pi}{4})$$
    $$=-1$$
    Hence
    $$f'(x)=1$$
    Or 
    $$\dfrac{dy}{dx}=1$$
    Or 
    $$y=x+c$$
    Hence
    $$y=f(x)$$ is an equation of a straight line parallel to $$y=x$$.
    Hence
    $$f'(x)$$ is independent of x and its value is 1.
  • Question 5
    1 / -0
    If the tangent at P  on the curve $$\displaystyle x^{m}y^{n}=a^{m+n}$$ meets the co-ordinates axes at A and B, then $$AP: PB= $$
    Solution
    $$\displaystyle x^{m}y^{n}=a^{m+n}.$$ 
    Take $$log$$ both sides
    $$\displaystyle m\log x+n\log y=\left ( m+n \right )\log a$$
    Differentiating w.r.t $$x$$, we get
    $$\displaystyle m\cdot \dfrac{1}{x}+n\cdot \dfrac{1}{y}\dfrac{dy}{dx}=0$$
    $$\displaystyle \therefore \dfrac{dy}{dx}=-\dfrac{m}{n}\dfrac{y}{x}$$
    Hence the equation of the tangent is
    $$\displaystyle Y-y= -\dfrac{m}{n}\dfrac{y}{x}\left ( X-x \right )$$
    $$\Rightarrow\displaystyle myX+nxY= \left ( m+n \right )\cdot xy$$...(1)
    Let the tangent (1) meet the axes in points $$A$$ and $$B$$. 
    Putting  $$Y= 0,$$ we get $$\displaystyle A= \left [ \dfrac{m+n}{m}x, 0 \right ]$$
    Putting $$X=0$$ we get $$\displaystyle B=\left ( 0, \dfrac{m+n}{m}y \right )$$
    Point of contact $$P$$ is $$(x, y).$$
    Let $$P$$ divide $$AB$$ in the ratio $$\displaystyle \lambda :1$$
    $$\displaystyle \therefore x= \dfrac{\lambda .0+1\cdot \dfrac{m+n}{n}x}{\lambda +1}$$$$\Rightarrow\displaystyle \left ( \lambda +1 \right )x= \left ( \dfrac{m}{n}+1 \right )x$$
    $$\Rightarrow\displaystyle \lambda +1= \dfrac{m}{n}+1$$
    $$\displaystyle\therefore \lambda =\dfrac{m}{n}$$

  • Question 6
    1 / -0
    Find the equation of the tangent to the curve at any point $$(X, Y)$$.
    $$\displaystyle \frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1.$$
    Solution
    Given, $$\displaystyle \frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1.$$  ..(1)
    Differentiating w.r.t. x, we get 
    $$\displaystyle m.\frac{x^{m-1}}{a^{m}}+m.\frac{y^{m-1}}{b^{m}}\cdot \frac{dy}{dx}=0.$$
    $$\displaystyle \therefore\frac{dy}{dx} =\frac{1}{a}\left ( \frac{x}{a} \right )^{m-1}.b\left ( \frac{b}{y} \right )^{m-1}$$
    $$\displaystyle \therefore$$ Equation of tangent is $$\displaystyle Y-y=\frac{dy}{dx}\left ( X-x \right )$$
    or $$\displaystyle Y-y=-\frac{1}{a}\left ( \frac{x}{a} \right )^{m-1}.b\left ( \frac{b}{y} \right )^{m-1}\left ( X-x \right )$$
    or $$\displaystyle

    \frac{X}{a}\left ( \frac{x}{a} \right )^{m-1}-\left ( \frac{x}{a}

    \right )^{m}=-\frac{Y}{b}\left ( \frac{y}{b} \right )^{m-1}+\left (

    \frac{y}{b} \right )^{m}$$
    or $$\displaystyle \frac{X}{a}\left (

    \frac{x}{a} \right )^{m-1}+\frac{Y}{b}\left ( \frac{y}{b} \right

    )^{m-1}=\left ( \frac{x}{a} \right )^{m}+\left ( \frac{y}{b} \right

    )^{m}$$
    or $$\displaystyle \frac{X}{a}\left ( \frac{x}{a} \right )^{m-1}+\frac{Y}{b}\left ( \frac{y}{b} \right )^{m-1}=1,$$ by (1)
  • Question 7
    1 / -0
    For the equation $$\displaystyle x^{2/3}+y^{2/3}=a^{2/3}$$, find the equation of tangent at the point $$\displaystyle x=a\sin ^{3}\theta, y=a\cos ^{3} \theta$$.
    Solution
    $$x^{2/3}+y^{2/3}=a^{2/3}$$
    Differentiating with respect to x, gives us 

    $$\dfrac{2}{3}[x^{-1/3}+y^{-1/3}y']=0$$
    Therefore 
    $$y'=-\dfrac{x^{-1/3}}{y^{-1/3}}$$

    $$=-\left(\dfrac{y}{x}\right)^{1/3}$$

    At $$x=asin^{3}\theta$$ and $$y=acos^{3}\theta$$

    $$y'=-\dfrac{cos\theta}{sin\theta}$$

    This is the slope of the tangent at the given point.
    Hence the equation of the tangent is 

    $$(y-acos^{3}\theta)=\dfrac{-cos\theta}{sin\theta}(x-asin^{3}\theta)$$  [slope-point form]
  • Question 8
    1 / -0
    Find the condition that the line $$\displaystyle Ax+By= 1$$ may be a normal to the curve $$\displaystyle a^{n-1}y=x^{n}.$$
    Solution
    Given, $$\displaystyle a^{n-1}y=x^{n}$$
    $$\displaystyle \therefore \dfrac{dy}{dx}=n\dfrac{x^{n-1}}{a^{n-1}}=n\dfrac{x^{n-1}}{a^{n-1}}\cdot \dfrac{1}{x}=n\dfrac{y}{x}.$$
    $$\displaystyle \therefore $$ Normal is: $$\displaystyle Y-y=-\dfrac{1}{dy/dx}\left ( X-x \right) =-\dfrac{x}{ny}\left ( X-x \right )$$
    $$\displaystyle \therefore Xx+Yny=ny^{2}+x^{2}.$$
    Compare with $$AX+BY=1$$
    $$\displaystyle \therefore \dfrac{X}{A}=\dfrac{ny}{B}= \dfrac{ny^{2}+x^{2}}{1}=k,$$ say.
    $$\displaystyle \therefore x= Ak, y=(Bk/n)$$ and $$\displaystyle ny^{2}+x^{2}=k$$ or $$\displaystyle  k^{2}\left [ \left ( B^{2}/n+A^{2} \right ) \right ]=k$$
    $$\displaystyle \therefore k=\dfrac{n}{B^{2}+nA^{2}}$$ ..(1)
    Now $$\displaystyle a^{n-1}y=x^{n}.$$ 
    Put for $$x$$ and $$y$$. 
    $$\displaystyle a^{n-1}y\cdot \dfrac{Bk}{n}= A^{n}k^{n}$$ $$\Rightarrow\displaystyle a^{n-1}B= nA^{n}k^{n-1}$$
    $$\Rightarrow\displaystyle a^{n-1}B=nA^{n}\cdot \left ( \dfrac{n}{B^{2}+nA^{2}} \right )^{n-1},$$ by (1)
    $$\Rightarrow\displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.$$
    Above is the required condition.
  • Question 9
    1 / -0
    What are the tangent and normal to the curve $$x=\displaystyle \frac{2at^{2}}{1+t^{2}}$$, $$ y= \displaystyle \frac{2at^{3}}{a+t^{2}}$$ at the point for which $$\displaystyle t=\frac{1}{2}$$
    Solution
    Given $$x=\displaystyle \frac{2at^{2}}{1+t^{2}}$$, $$ y= \displaystyle \frac{2at^{3}}{1+t^{2}}$$
    At $$t=\dfrac{1}{2}$$ we get
    $$x=\dfrac{2a}{5}$$ , $$y=\dfrac{a}{5}$$
    Hence, the point is $$(\dfrac{2a}{5},\dfrac{a}{5})$$

    Now, $$\dfrac { dx }{ dt } =2a\dfrac { (1+t^{ 2 })2t-{ 2t }^{ 3 } }{ { (1+t^{ 2 }) }^{ 2 } } =\dfrac { 4at }{ { (1+t^{ 2 }) }^{ 2 } } $$

    $$\dfrac { dy }{ dt } =2a\dfrac { (1+t^{ 2 })3t^{ 2 }-{ t }^{ 3 }(2t) }{ { (1+t^{ 2 }) }^{ 2 } } =\dfrac { 2a(3t^{ 2 }+{ t }^{ 4 }) }{ { (1+t^{ 2 }) }^{ 2 } } $$

    Now, $$\dfrac{dy}{dx}=\dfrac { (3t^{ 2 }+{ t }^{ 4 }) }{ 2t } $$

    Slope of tangent at $$t=\dfrac{1}{2}$$ is $$\dfrac { 13 }{ 16a } $$

    Equation of tangent at $$(\dfrac{2a}{5},\dfrac{a}{5})$$ is 
    $$y-\dfrac{a}{5}=\dfrac { 13 }{ 16a } (x-\dfrac{2a}{5})$$
    $$\Rightarrow 13x-16y=2a$$

    Equation of normal at $$(\dfrac{2a}{5},\dfrac{a}{5})$$ is 
    $$y-\dfrac{a}{5}=-\dfrac { 16a }{ 13 } (x-\dfrac{2a}{5})$$
    $$\Rightarrow 16x+13y=9a$$
  • Question 10
    1 / -0
    Normal to the curve $$y=\displaystyle x^{3}-2x^{2}+4$$ at the point where $$x=2$$
    Solution
    Substituting $$x=2$$ in the equation, we get 
    $$y=8-8+4=4$$
    Thus the point is $$(2,4)$$.
    Now 
    $$dy=3x^{2}-4x.dx$$
    Or 
    $$\dfrac{-dx}{dy}=\dfrac{-1}{3x^{2}-4x}$$
    Now 
    $$\dfrac{-dx}{dy}_{x=2}=\dfrac{-1}{12-8}$$

    $$=\dfrac{1}{4}$$.
    Hence equation of normal will be 
    $$y-4=(x-2).\dfrac{-1}{4}$$
    Or 
    $$4y-16=2-x$$
    Or 
    $$x+4y=18$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now