Self Studies

Tangents and it...

TIME LEFT -
  • Question 1
    1 / -0

    The points of contact of the vertical tangents $$x= 2-3\sin \theta $$, $$y= 3+2\cos \theta $$ are

  • Question 2
    1 / -0

    The lines tangent to the curves $$\displaystyle y^{3}-x^{2}y+5y-2x=0$$ and $$\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0$$ at the origin intersect at an angle $$\displaystyle \theta $$ equal to

  • Question 3
    1 / -0

    Equation of the line through the point $$(1/2,2)$$ and tangent to the parabola $$\displaystyle y=\frac{-x^{2}}{2}+2$$ and secant to the curve $$\displaystyle y=\sqrt{4-x^{2}}$$ is

  • Question 4
    1 / -0

    If the curve $$\displaystyle { \left( \frac { x }{ a }  \right)  }^{ n }+{ \left( \frac { y }{ b }  \right)  }^{ n }=2$$ touches the straight line $$\displaystyle \frac { x }{ a } +\frac { y }{ b } =2$$, then find the value of $$n$$.

  • Question 5
    1 / -0

    Find all the tangents to the curve $$\displaystyle y=\cos \left ( x+y \right ),-2\pi \leq \times \leq 2\pi $$ that are parallel to the line $$x + 2y = 0$$

  • Question 6
    1 / -0

    A function is defined parametrically by the equations
    x= $$\displaystyle 2t+t^{2}\sin \frac{1}{t}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
      and 

    y = $$\displaystyle \frac{1}{t}\sin t^{2}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
    Find the equation of the tangent and normal at the point for t = 0 if they exist

  • Question 7
    1 / -0

    The curve $$\displaystyle y=ax^{3}+bx^{2}+cx+5$$ touches the $$x$$ - axis at $$P(-2, 0)$$ and cuts the $$y$$-axis at a point $$Q$$, where its gradient is $$3$$. Find $$a, b, c$$.

  • Question 8
    1 / -0

    Let $$f$$ be a continuous, differentiable and bijective function. If the tangent to $$y=f\left( x \right) $$ at $$x=b$$, then there exists at least one $$c\in \left( a,b \right) $$ such that 

  • Question 9
    1 / -0

    Find the equation of the normal to the curve $$\displaystyle y = \left ( 1+x \right )^{y}+\sin ^{-1}\left ( \sin ^{2}x \right )$$ at $$x = 0$$

  • Question 10
    1 / -0

    Find the equation of normal to the curve $$\displaystyle x^{2}=4y$$ passing through the point $$(1, 2)$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now