Self Studies

Tangents and its Equations Test 22

Result Self Studies

Tangents and its Equations Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points of contact of the vertical tangents $$x= 2-3\sin \theta $$, $$y= 3+2\cos \theta $$ are
    Solution
    For the tangents to be vertical,
    $$\dfrac{dy}{dx}=\infty$$
    Or 
    $$\dfrac{dx}{dy}=0$$
    Or 
    $$\dfrac{dx}{d\theta}=0$$
    Or 
    $$-3\cos\theta=0$$
    Or 
    $$\theta=\dfrac{2n-1}{2}\pi$$
    Hence
    $$\theta=\dfrac{\pi}{2},\dfrac{3\pi}{2}$$.
    Now 
    $$x_{\tfrac{\pi}{2}}$$
    $$=-1$$ 
    $$y_{\tfrac{\pi}{2}}$$
    $$=3$$.
    Similarly 
    $$x_{\tfrac{3\pi}{2}}=5$$
    $$y_{\tfrac{3\pi}{2}}=3$$.
    Hence the points are
    $$(-1,3)$$ and $$(3,5)$$.
  • Question 2
    1 / -0
    The lines tangent to the curves $$\displaystyle y^{3}-x^{2}y+5y-2x=0$$ and $$\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0$$ at the origin intersect at an angle $$\displaystyle \theta $$ equal to
    Solution
    Given curves are, $$\displaystyle y^{3}-x^{2}y+5y-2x=0  ..(1)$$ and $$\displaystyle x^{4}-x^{3}y^{2}+5x+2y=0  ..(2)$$ 
    differentiating both w.r.t $$x$$
    $$3y^2\cfrac{dy}{dx}-x^2\cfrac{dy}{dx}-2xy+5\cfrac{dy}{dx}-2=0$$
      and
    $$4x^3-3x^2y^2-2x^3y^2\cfrac{dy}{dx}+5+2\cfrac{dy}{dx}=0$$
    Thus, by putting coordinates $$(0,0)$$ of origin for $$(x,y)$$ in above equation $$(1)$$, slope of tangent at origin to the first curve is $$m_1=\cfrac{2}{5}$$
    and, by putting coordinates $$(0,0)$$ of origin for $$(x,y)$$ in equation $$(2)$$ above, slope of tangent at origin to the second curve is $$m_2=-\cfrac{5}{2}$$
    Clearly $$m_1.m_2=-1$$
    Hence both the lines are perpendicular.
  • Question 3
    1 / -0
    Equation of the line through the point $$(1/2,2)$$ and tangent to the parabola $$\displaystyle y=\frac{-x^{2}}{2}+2$$ and secant to the curve $$\displaystyle y=\sqrt{4-x^{2}}$$ is
    Solution
    Equation of tangent is $$\displaystyle y-2=m\left ( x-\dfrac{1}{2} \right )$$
    $$\displaystyle y=mx+2-\dfrac{m}{2}$$
    Put it in the parabolas $$\displaystyle mx+2-\dfrac{m}{2}=-\dfrac{x^{2}}{2}+2$$
    $$\displaystyle \dfrac{x^{2}}{2}+mx-\dfrac{m}{2}=0$$
    since D = 0
    $$\displaystyle \Rightarrow m^{2}+m=0$$
    m = 0, -1 Two tangents are there
     (i) y = 2
     (ii)$$\displaystyle y=-x+2+\dfrac{1}{2}$$
    $$\displaystyle \Rightarrow y=-x+\dfrac{5}{2}$$
    $$\displaystyle y-=-x+\dfrac{5}{2}$$
    The line y = 2 is tangent but $$\displaystyle y=-x+\dfrac{5}{2}$$ is secant for the curve

  • Question 4
    1 / -0
    If the curve $$\displaystyle { \left( \frac { x }{ a }  \right)  }^{ n }+{ \left( \frac { y }{ b }  \right)  }^{ n }=2$$ touches the straight line $$\displaystyle \frac { x }{ a } +\frac { y }{ b } =2$$, then find the value of $$n$$.
    Solution
    Given $$\displaystyle { \left( \frac { x }{ a }  \right)  }^{ n }+{ \left( \frac { y }{ b }  \right)  }^{ n }=2$$
    Differentiating both sides w.r.t $$x,$$ we get
    $$\displaystyle \frac { n }{ a } { \left( \frac { x }{ a }  \right)  }^{ n-1 }+\frac { b }{ b } { \left( \frac { y }{ b }  \right)  }^{ n-1 }\times \frac { dy }{ dx } =0$$
    $$\displaystyle \Rightarrow \frac { dy }{ dx } =-\frac { n }{ a } { \left( \frac { x }{ a }  \right)  }^{ n-1 }\times \frac { b }{ a } { \left( \frac { b }{ y }  \right)  }^{ n-1 }$$
    $$\displaystyle \therefore \frac { dy }{ dx } $$ at $$\displaystyle \left( a,b \right) =\frac { b }{ a } $$
    $$\therefore$$ Tangent is $$\displaystyle y-b=-\frac { b }{ a } \left( x-a \right) \Rightarrow bx+ay=2ab\Rightarrow \frac { x }{ a } +\frac { y }{ b } =2$$
    for all values of $$n$$   $$(\because\displaystyle\frac{dy}{dx}$$ is independent of $$n)$$
  • Question 5
    1 / -0
    Find all the tangents to the curve $$\displaystyle y=\cos \left ( x+y \right ),-2\pi \leq \times \leq 2\pi $$ that are parallel to the line $$x + 2y = 0$$
    Solution
    Given equation is $$x+2y=0$$
    Slope $$\displaystyle = - \frac{1}{2}$$
     $$\displaystyle = - \frac{1}{2}=-sin(x+y)(1+y')$$
    $$\displaystyle \Rightarrow -\frac{1}{2}=-\sin \left ( x+y \right )\left ( 1-\frac{1}{2} \right )$$
    $$\displaystyle \Rightarrow \sin \left ( x+y \right )=1$$
    $$\displaystyle \Rightarrow \cos \left ( x+y \right )=0\Rightarrow y=0\cos x=0$$
    $$\displaystyle \therefore x=\frac{\pi }{2},\frac{3\pi }{2},-\frac{\pi }{2}.-\frac{3\pi }{2}$$
    $$\displaystyle \sin x=1$$ is possible for x = $$\displaystyle\frac{\pi }{2}$$ or $$\displaystyle -\frac{3\pi }{2}$$
    Equation are : $$\displaystyle y-0=-\frac{1}{2}\left ( x-\frac{\pi }{2} \right )$$ and $$\displaystyle y-0=-\frac{1}{2}\left ( x+\frac{3\pi }{2} \right )$$
  • Question 6
    1 / -0
    A function is defined parametrically by the equations
    x= $$\displaystyle 2t+t^{2}\sin \frac{1}{t}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
      and 
    y = $$\displaystyle \frac{1}{t}\sin t^{2}$$   if $$\displaystyle t\neq 0$$;    $$ 0  $$,   otherwise
    Find the equation of the tangent and normal at the point for t = 0 if they exist
    Solution
    Given, $$x= 2t+ t^2 \sin \dfrac {1}{t}$$ and $$y=\dfrac {1}{t} \sin t^2$$
    At $$t = 0$$ the point is origin
    $$\displaystyle \frac{dx}{dt}=\lim_{t\rightarrow 0}\frac{2t+t^{2}\sin \dfrac 1t-0}{t}=2$$
    $$\displaystyle \frac{dy}{dt}=\lim_{t-0}\frac{\dfrac{1}{t}\sin t^{2}}{t}=1$$
    $$\displaystyle \frac{dy}{dx}=\dfrac{1}{2}$$
    equation of tangent is $$\displaystyle y-0=\frac{1}{2}\left ( x-0 \right )\Rightarrow 2y-x=0$$
    equation of normal is $$y - 0 = -2(x - 0)\Rightarrow y+2x=0$$
  • Question 7
    1 / -0
    The curve $$\displaystyle y=ax^{3}+bx^{2}+cx+5$$ touches the $$x$$ - axis at $$P(-2, 0)$$ and cuts the $$y$$-axis at a point $$Q$$, where its gradient is $$3$$. Find $$a, b, c$$.
    Solution
    Given, $$y= ax^3+bx^2+cx+5$$

    $$\therefore \displaystyle \frac{dy}{dx}= 3ax^{2}+2bx+c$$

    Since the curve touches $$x$$-axis at $$\left ( -2,0 \right )$$ so

    $$\displaystyle \frac{dy}{dx}|_{\left ( -2,0 \right )}= 0\Rightarrow 12a-4b+c= 0$$   ....  $$\left ( i \right )$$

    The curve cut the $$y$$-axis at $$\left ( 0,8 \right )$$, so

    $$\displaystyle \frac{dy}{dx}|_{\left ( 0,8 \right )}= 3\Rightarrow c= 3$$

    Also the curve passes through $$\left ( -2,0 \right )$$, so

    $$0= -8a+4b-2c+8\Rightarrow -8a+4b-2= 0$$   ..... $$ \left ( ii \right )$$

    Solving $$ \left ( i \right )$$ and $$ \left ( ii \right )$$ $$a = -\dfrac {1}{4}$$, $$b =0$$
  • Question 8
    1 / -0
    Let $$f$$ be a continuous, differentiable and bijective function. If the tangent to $$y=f\left( x \right) $$ at $$x=b$$, then there exists at least one $$c\in \left( a,b \right) $$ such that 
    Solution
    Since the same line is tangent at one point $$x=a$$ and normal at other point $$x=b$$
    $$\Rightarrow$$ Tangent at $$x=b$$ will be perpendicular to tangent at $$x=a$$
    $$\Rightarrow$$ Slope of tangent changes from positive to negative or negative to positive. Therefore, it takes the value zero somewhere. Thus, there exists a point $$c\in \left( a,b \right) $$ where $$f'\left( c \right) =0$$.
  • Question 9
    1 / -0
    Find the equation of the normal to the curve $$\displaystyle y = \left ( 1+x \right )^{y}+\sin ^{-1}\left ( \sin ^{2}x \right )$$ at $$x = 0$$
    Solution
    Clearly at $$x=0 , y=1$$

    Thus curve is, $$\displaystyle y = \left ( 1+x \right )^{y}+\sin ^{-1}\left ( \sin ^{2}x \right )$$

    Differentiating w.r.t $$x$$

    $$\cfrac{dy}{dx}=(1+x)^y[\cfrac{y}{1+x}+\log(1+x).\cfrac{dy}{dx}]+\cfrac{2\sin x.\cos x}{\sqrt{1+\sin^4x}}$$

    Putting $$x=0 , y=1$$, we get, $$\cfrac{dy}{dx}=1=m$$ (say)

    Thus slope of the normal is $$=-\cfrac{1}{m}=-1$$

    Hence require equation is given by,

    $$(y-1)=-1(x-0)$$

    $$\Rightarrow x+y=1$$
  • Question 10
    1 / -0
    Find the equation of normal to the curve $$\displaystyle x^{2}=4y$$ passing through the point $$(1, 2)$$
    Solution
    $$x^2=4y$$

    $$\Rightarrow \cfrac{dy}{dx}=\cfrac{x}{2}=m$$ (say)
    Thus slope of normal at $$(1,2)$$ is $$m'=-\cfrac{1}{m}=\dfrac{-2}{x}=\dfrac{-2}{2}=-1$$

    Hence, equation of normal at $$(1,2)$$ to the parabola is,

    $$(y-2)=-1(x-1)$$

    $$\Rightarrow x+y=3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now