Self Studies

Tangents and its Equations Test 23

Result Self Studies

Tangents and its Equations Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At what point of the curve $$\displaystyle y=2x^{2}-x+1$$ tangent is parallel to $$y = 3x + 4$$
    Solution
    Let the point is $$P(a,b)$$
    Now the given curve is $$y=2x^2-x+1$$
    Differentiating w.r.t $$x$$
    $$\cfrac{dy}{dx}=4x-1$$
    Thus slope of tangent at P is $$=\left(\cfrac{dy}{dx}\right)_{(a,b)}=4a-1$$
    But given the tangent is parallel to line $$y=3x+4$$
    $$\Rightarrow 4a-1=3\Rightarrow a=1$$
    Also the point P lies on the given curve,
    $$b=2a^2-a+1=2$$
    Therefore, the point P is $$(1,2)$$
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    The slope of the normal to the curve $$\displaystyle x=a\left ( \theta -\sin \theta  \right ),\: \: y=a\left ( 1-\cos \theta  \right )$$ at point $$\displaystyle \theta =\dfrac{\pi }2$$ is
    Solution
    The slope of normal $$\displaystyle x=a\left ( \theta -\sin \theta

     \right );\: \: \: \: y=a\left ( 1-\cos \theta  \right )\: \: \: at\: \:

    \: \theta =\dfrac{\pi }{2}$$
    $$\displaystyle \left ( \dfrac{dx}{d\theta } \right )_{\theta =\dfrac{\pi }{2}}=a\left ( 1-\cos \theta  \right )=a $$
    $$\displaystyle \left ( \dfrac{dy}{d\theta } \right )_{\theta =\dfrac{\pi }{2}}=a\sin \theta =a $$
    $$\therefore \left ( \dfrac{dy}{dx} \right )=1$$
    Therefore, slope of normal at the given point is, $$m= \left ( -\dfrac{dx}{dy} \right )=-1$$
    Hence, option 'C' is correct.
  • Question 3
    1 / -0
    A tangent to the hyperbola $$\displaystyle y=\frac { x+9 }{ x+5 } $$ passing though the origin is
    Solution
    $$\displaystyle y=\frac { x+9 }{ x+5 } =1+\frac { 4 }{ x+5 } $$
    $$\displaystyle \frac { dy }{ dx } $$ at $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) =-\frac { 4 }{ { \left( { x }_{ 1 }+5 \right)  }^{ 2 } } $$
    Equation of tangent is 
    $$\displaystyle y-{ y }_{ 1 }=-\frac { 4 }{ { \left( { x }_{ 1 }+5 \right)  }^{ 2 } } \left( x-{ x }_{ 1 } \right) \Rightarrow y-1-\frac { 4 }{ { x }_{ 1 }+5 } =-\frac { 4 }{ { \left( { x }_{ 1 }+5 \right)  }^{ 2 } } \left( x-{ x }_{ 1 } \right) $$
    Since it passes through origin $$(0,0)$$
    $$\displaystyle -1-\frac { 4 }{ { x }_{ 1 }+5 } =-\frac { 4 }{ { \left( { x }_{ 1 }+5 \right)  }^{ 2 } } \Rightarrow { \left( { x }_{ 1 }+5 \right)  }^{ 2 }+4\left( { x }_{ 1 }+5 \right) +4{ x }_{ 1 }=0$$
    $$\Rightarrow { { x }_{ 1 } }^{ 2 }+18{ x }_{ 1 }+45=0\Rightarrow \left( { x }_{ 1 }+15 \right) \left( { x }_{ 1 }+3 \right) =0\Rightarrow { x }_{ 1 }=15$$ or $${ x }_{ 1 }=-3$$
    So equation of tangent is $$\displaystyle y-1-\frac { 4 }{ \left( -15+5 \right)  } =-\frac { 4 }{ { \left( -15+5 \right)  }^{ 2 } } \left( x+15 \right) $$
    $$\displaystyle \Rightarrow y-1+\frac { 2 }{ 5 } =-\frac { 1 }{ 25 } \left( x+15 \right) \Rightarrow y-\frac { 3 }{ 5 } =-\frac { x }{ 25 } -\frac { 3 }{ 5 } \Rightarrow x+25y=0$$
  • Question 4
    1 / -0
    The normal to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ is perpendicular to $$x$$ axis at the point
    Solution
    Let the point be $$P\displaystyle \left ( x_{1},y_{1} \right )$$
    Now $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$
    Differentiating w.r.t $$x$$
    $$\displaystyle \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}\times \frac{dy}{dx}=0 $$
    $$\displaystyle \frac{dy}{dx}=-\sqrt{\frac{y}{x}}$$
    Thus, slope of normal at P is $$ =\displaystyle -( \frac{dx}{dy}  )_{( x_{1},y_{1} )}=-\sqrt{\frac{x_{1}}{y_{1}}} $$
    If normal $$\displaystyle \perp $$ to x axis then $$\displaystyle \frac{dx}{dy}=\frac{a}{0} $$
    $$\displaystyle \therefore  y_1 = a\Rightarrow  x_1 = 0$$
    Therefore, required point is  $$(a, 0)$$
    Hence, option 'B' is correct.
  • Question 5
    1 / -0
    If equation of normal at a point $$\displaystyle \left ( m^{2},-m^{3} \right )$$ on the curve $$\displaystyle x^{3}-y^{2}=0\: \: is\: \: y=3mx-4m^{3}$$ then $$\displaystyle m^{2}$$ equals
    Solution
    $$\displaystyle x^{3}-y^{2}=0 $$
    $$\Rightarrow \displaystyle 3x^{2}-2y\left ( \frac{dy}{dx} \right )=0 $$
    $$\Rightarrow \displaystyle 3x^{2}=2y\left ( \frac{dy}{dx} \right ) $$
    $$\Rightarrow \displaystyle \frac{3x^{2}}{2y}=\frac{dy}{dx}$$
    $$\Rightarrow \displaystyle \left ( \frac{dy}{dx} \right )_{\left ( m^{2},-m^{3} \right )}=\frac{3\times m^{4}}{-2\times m^{3}}$$
    $$\therefore \displaystyle -\left ( \frac{dx}{dy} \right )=\frac{2}{3m}$$
    Therefore, equation of normal at given point is,
    $$\Rightarrow \displaystyle \left ( y+m^{3} \right )=\frac{2}{3m}\left ( x-m^{2} \right )$$
    $$\Rightarrow \displaystyle 3my+3m^{4}=2x-2m^{2}$$
    $$\Rightarrow \displaystyle 3my=2x-3m^{4}-2m^{2}$$
    $$\Rightarrow \displaystyle y=\frac{2x}{3m}-m^{3}-\frac{2}{3}m ..(1)$$
    but given equation of normal is, $$\displaystyle y=3mx-4m^{3} ..(2)$$
    Thus comparing (1) and (2), we get
    $$\displaystyle 3m=\frac{2}{3m}$$
    $$\Rightarrow \displaystyle m^{2}=\frac{2}{9}$$
    Hence, option 'D' is correct.
  • Question 6
    1 / -0
    The slope of the tangents to the curve $$y = (x + 1) (x - 3)$$ at the points where it crosses x - axis are
    Solution
    $$y = (x + 1)(x - 3) ..(1)$$

    Substitute $$y = 0$$ to get the point of intersection of this curve with $$x-axis$$

    $$0 = (x + 1) (x - 3)$$

    $$\Rightarrow x = -1, 3$$

    So the points are $$(-1, 0)$$ and $$(3, 0)$$

    Now differentiating eq. (1), we get

    $$\displaystyle \dfrac{dy}{dx}=\left ( x-3 \right )+\left ( x+1 \right )=2x-2 $$

    $$\Rightarrow \displaystyle \left ( \dfrac{dy}{dx} \right )=2\left ( x-1 \right )$$

    Thus slope at $$(-1,0)$$ is $$=\left (\dfrac{dy}{dx} \right )_{\left ( -1,0 \right )}=-4 $$

    and at $$(3,0)$$ is $$=\displaystyle \left ( \dfrac{dy}{dx} \right )_{\left ( 3,0 \right )}=4 $$

    Hence, option 'C' is correct.
  • Question 7
    1 / -0
    The slope of normal to the curve $$\displaystyle y^{2}=4ax$$ at a point $$\displaystyle \left ( at^{2},2at \right )$$ is
    Solution
    $$y^2=4ax$$
    $$\Rightarrow 2y\cfrac{dy}{dx}=4a\Rightarrow \cfrac{dy}{dx}=\cfrac{2a}{y}$$
    Therefore, slope of normal to the given curve is, $$=\left(-\cfrac{dx}{dy}\right)_{(at^2,2at)}=-\cfrac{2at}{2a}=-t$$
    Hence, option 'C' is correct.
  • Question 8
    1 / -0
    The slope of the tangent to the curve $$xy + ax - by = 0$$ at the point $$(1, 1)$$ is $$2$$ then values of $$a$$ and $$b$$ are respectively -
    Solution
    Given  curve is $$xy + ax - by = 0$$
    Slope of tangent at $$(1, 1)$$ is $$\displaystyle x.\frac{dy}{dx}+y+a-b.\frac{dy}{dx}=0 $$
    $$\displaystyle

    \left ( \frac{dy}{dx} \right )_{\left ( 1,1 \right )}=-\left [

    \frac{\left ( a+y \right )}{x-b} \right ]_{\left ( 1,1 \right

    )}=-\frac{\left ( a+1 \right )}{1-b} $$
    $$\displaystyle \therefore -\frac{\left ( a+1 \right )}{1-b}=2 $$
    So, $$2b - a = 3  $$                                        ..........(1)
    $$\displaystyle \because (1, 1)$$ lies on curve $$xy + ax - by = 0$$
    $$\displaystyle \therefore a-b=-1 $$         .........(2)
    From (1) and (2), we get
    $$a = 1, b = 2$$
    Hence, option 'A' is correct.
  • Question 9
    1 / -0
    The coordinates of the points on the curve $$\displaystyle x=a\left ( \theta +\sin \theta  \right ),y=a\left ( 1-\cos \theta  \right )$$ where tangent is inclined an angle $$\displaystyle \dfrac{\pi }4$$ to the $$x-$$axis are -
    Solution
    The co-ordinates are $$x = \displaystyle a\left ( \theta +\sin \theta  \right );\: \: y=a\left ( 1-\cos \theta  \right )$$
    Thus, $$\displaystyle \frac{dx}{d\theta }=a\left ( 1+\cos \theta  \right )\displaystyle =a\left ( 2\cos^{2}\frac{\theta }{2}\right )$$ and $$\displaystyle \frac{dy}{d\theta }=a\sin \theta =2a\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$$
    $$\therefore \displaystyle \dfrac{dy}{dx}=\tan \dfrac{\theta }{2}$$
    but, $$\displaystyle \frac{dy}{dx}=\tan \frac{\pi }{4}$$       (given)
    $$\therefore 1 = \tan \dfrac{\theta }{2}$$
    $$\Rightarrow \displaystyle \theta =\frac{\pi }{2}$$
    So the point is, $$\displaystyle x=a\left ( \theta +\sin \theta  \right )$$
    $$x = \displaystyle a\left ( \frac{\pi }{2}+1 \right )$$
    $$y = a(1 - 0)=a$$
    Therefore, the required point is $$\displaystyle \left ( a\left ( \frac{\pi }{2}+1 \right ),a \right )$$
    Hence, option 'C' is correct.
  • Question 10
    1 / -0
    If the curve $$y^2=ax^3-6x^2+b$$ passes through $$(0,\,1)$$ and has its tangent parallel to y-axis at $$x=2$$, then
    Solution
    Given equation of curve
    $$y^2=ax^3-6x^2+b$$     
    Since, the curve passes through $$(0,1)$$
    $$\Rightarrow b=1$$

    Since, the tangent is parallel to y-axis at $$x=2$$
    $$\Rightarrow y=8a-23$$
    So, point of tangency is $$(2,8a-23)$$

    Slope of tangent to curve
    $$2y\dfrac{dy}{dx}=3ax^2-12x$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{3ax^2-12x}{2y}$$
    Slope of tangent to curve at $$(2,8a-23)$$ is $$\dfrac{12a-24}{16a-46}$$

    Since, the tangent is parallel to y-axis
    $$\dfrac{12a-24}{16a-46}=\dfrac{1}{0}$$
    $$\Rightarrow 16a-46=0$$
    $$\Rightarrow a=\dfrac{23}{8}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now