Self Studies

Tangents and its Equations Test 3

Result Self Studies

Tangents and its Equations Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Normal to the curve $$\displaystyle x^{2}=4y$$ which passes through the point $$(1,2)$$
    Solution
    From the equation of the curve $$\displaystyle x^{2}=4y$$,
    we get

    $$dy/dx=x/2.$$ If $$m$$ be the slope of the normal to $$\displaystyle x^{2}=4y$$

    then $$\displaystyle

    m=\dfrac{-1}{\left(\frac{dy}{dx}\right)}=-\frac{2}{x}$$ 

    $$\displaystyle

    \therefore x=\dfrac{-2}m$$ and $$y=\dfrac{x^{2}}4=1/m^{2}$$
    Thus normal is

    $$\displaystyle y-\frac{1}{m^{2}}=m\left ( x+\frac{2}{m} \right

    )$$.

    If it passes through the point (1,2),

    then $$\displaystyle \therefore

    2-\frac{1}{m^{2}}=m\left ( 1+\frac{2}{m} \right

    )=m+2 \therefore m^{3}=-1$$ 

    or$$\displaystyle

     m=-1$$

    $$ \therefore $$Required normal is,

    $$(y-2)=-1(x-1) $$

    $$\Rightarrow  x+y=3$$
  • Question 2
    1 / -0
    Find the equation of a line passing through $$(-2,3)$$ and parallel to tangent at origin for the circle $$\displaystyle x^{2}+y^{2}+x-y=0$$
    Solution
    Given,$$x^{2}+y^{2}+x-y=0$$
    Differentiating w.r.t $$x$$, we get 
    $$2x+2y\cfrac{dy}{dx}+1-\cfrac{dy}{dx}=0$$
    $$\Rightarrow \cfrac{dy}{dx}=\cfrac{1+2x}{1-2y}$$
    Thus slope of the tangent at origin is, $$m=\left(\cfrac{dy}{dx}\right)_{(0,0)}=1$$
    Hence required line through $$(-2,3)$$ is, $$(y-3)=1(x+2)\Rightarrow x-y+5=0$$
  • Question 3
    1 / -0
    Find the equations of tangents to parabola $$\displaystyle y^{2}= 4ax$$ which are drawn from the point (2a,3a).
    Solution
    Any tangent to parabola is given by,  $$\displaystyle y= mx+\frac{a}{m}$$
    Now given it passes through $$(2a, 3a)$$
    $$\Rightarrow \displaystyle 3a= 2am+\dfrac{a}{m}\Rightarrow 2m^2-3m+1=0\Rightarrow m =1,\dfrac{1}{2}$$
    Hence equation of tangents are, $$(y-3a)=1(x-2a)$$ and $$(y-3a)=\cfrac{1}{2}(x-2a)$$
     $$\Rightarrow \displaystyle x-y+a= 0$$  and $$ x-2y+4a= 0$$
  • Question 4
    1 / -0
    The normal drawn at the point $$\displaystyle P\left ( at_{1}^{2},2at_{1} \right )$$ on the parabola meets the curve again at$$\displaystyle Q\left ( at_{2}^{2},2at_{2} \right ).$$ then $$\displaystyle t_{2} =?$$
    Solution
    The normal at $$\displaystyle t_{1}$$ is easily found to be $$\displaystyle y= -t_{1}x+2at_{1}+at_{1}^{3}$$It passes through the point $$\displaystyle \left ( at_{2}^{2},2at_{2} \right )$$
    $$\displaystyle \therefore 2at_{2}= -t_{1}at_{2}^{2}+2at_{1}+at_{1}^{3}$$or $$\displaystyle 2a\left ( t_{2}-t_{1} \right )= -at_{1}\left ( t_{2}^{2}-t_{1}^{2} \right )$$
    $$\displaystyle \therefore 2= -t_{1}\left ( t_{2}+t_{1} \right ) \because t_{2}\neq t_{1}$$
    $$\displaystyle \therefore t_{2}= -t_{1}-\frac{2}{t_{1}}$$

    Ans: A
  • Question 5
    1 / -0
    The slope of the tangent to the curve $$\displaystyle y=-x^{3}+3x^{2}+9x-27$$ is maximum when x equals.
    Solution
    Given, $$\displaystyle y=-x^{3}+3x^{2}+9x-27$$
    Slope at any point on thegiven curve is  $$m= \cfrac{dy}{dx}=-3x^2+6x+9$$
    Now for maximum value of slope we must have $$\cfrac{dm}{dx}=0=-6x+6\Rightarrow x = 1$$
  • Question 6
    1 / -0
    Find the tangents and normal to the curve $$y(x-2)(x-3)-x+7=0,$$ at point (7,0) are 
    Solution
    Given curve is,  $$y(x-2)(x-3)-x+7=0\Rightarrow y(x^2-5x+6)-x+7=0$$
    Differentiating w.r.t $$x$$
    $$\cfrac{dy}{dx}(x^2-5x+6)+y(2x-5)-1=0$$
    putting (7,0) to get slope of the tangent
    $$\cfrac{dy}{dx}(7^2-5.7+6)+0(2x-5)-1=0\Rightarrow \cfrac{dy}{dx}=\cfrac{1}{20}$$
    $$\Rightarrow$$ slope of tangent is $$m = \cfrac{1}{20}$$ and slope of normal is, $$m'=-\cfrac{1}{m}=-20$$
    Hence required lines are $$x-20y-7=0,$$  and  $$20x+y-140=0$$.
  • Question 7
    1 / -0
    Find the distance between the point $$(1,1)$$ and the tangent to the curve $$\displaystyle y=e^{2x}+x^{2}$$ drawn from the point where the curve cuts $$y$$-axis
    Solution
    Clearly the the point on the $$y$$-axis is $$(0,1)\equiv P$$ (say)
    Now $$\cfrac{dy}{dx}=2e^{2x}+2x$$
    Thus slope at $$P$$ is $$m=\left(\cfrac{dy}{dx}\right )_{(0,1)}=2$$
    Thus required tangent is $$(y-1)=2(x-0)\Rightarrow 2x-y+1=0$$
    Hence, distance of $$(1,1)$$ from this line is $$=\left |\cfrac{2\times 1-1+1}{\sqrt{2^2+1^2}}\right |=\cfrac{2}{\sqrt{5}}$$
  • Question 8
    1 / -0
    The curve $$\displaystyle y-e^{xy}+x=0$$ has a vertical tangent at
    Solution
    Given, $$\displaystyle y-e^{xy}+x=0$$
    Differentiating w.r.t  $$x$$
    $$\cfrac{dy}{dx}-e^{xy}(y+x\cfrac{dy}{dx})+1=0$$
    $$\Rightarrow \cfrac{dy}{dx}=\cfrac{1-ye^{xy}}{xe^{xy}-1}$$
    Thus for vertical tangent, $$\cfrac{dy}{dx}=\infty$$
    $$\Rightarrow xe^{xy}-1=0$$
    Hence required point is $$(1,0)$$
  • Question 9
    1 / -0
    Find the equation of the tangent to the curve $$\displaystyle y=x^{2}+1$$ at the point $$(1,2).$$
    Solution
    Given $$y=x^2+1$$

    $$y'=2x$$ at point $$(1,2)$$

    $$\Rightarrow y'=2$$

    The equation of tangent $$y-2=2(x-1)$$

    $$\Rightarrow y=2x$$

    Ans: B
  • Question 10
    1 / -0
    The point on the curve $$\displaystyle y=x^{2}-3x+2$$ at which the tangent is perpendicular to the line $$y = x$$ is -
    Solution
    Let the point be $$P(a,b)$$
    Now the given curve is $$y=x^2-3x+2$$
    Differentiating w.r.t $$x$$
    $$\cfrac{dy}{dx}=2x-3$$
    Thus slope of tangent at P is $$=\left(\cfrac{dy}{dx}\right)_{(a,b)}=2a-3$$
    But given the tangent is perpendicular to line $$y=x$$
    $$\Rightarrow 2a-3=-1\Rightarrow a=1$$
    Also the point P lies on the given curve,
    $$b=a^2-3a+2=0$$
    Therefore, the point P is $$(1,0)$$
    Hence, option 'B' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now