Self Studies

Tangents and its Equations Test 4

Result Self Studies

Tangents and its Equations Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If tangent to curve at a point is perpendicular to $$x$$ - axis then at that point -
    Solution
    We know slope of tangent to the any curve $$'y'$$ is $$m=\cfrac{dy}{dx}$$
    Now if line is perpendicular to x-axis this means its slope is $$\infty$$
    $$\Rightarrow \cfrac{dy}{dx} \to \infty \Rightarrow \cfrac{dx}{dy}=0$$
    Hence, option 'C' is correct.
  • Question 2
    1 / -0
    The slope of the curve $$\displaystyle y=\sin x+\cos ^{2}x $$ is zero at the point where -
    Solution
    $$y=\sin x+\cos^2x$$
    $$\cfrac{dy}{dx}=\cos x-2\cos x .\sin x$$
    For slope to be zero, $$\cfrac{dy}{dx}=0$$
    $$\Rightarrow \cos x-2\cos x .\sin x=0\Rightarrow \cos x(1-2\sin x)=0$$
    $$\Rightarrow \cos x=0$$ or $$\sin x=\cfrac{1}{2}$$
    $$\Rightarrow x=\cfrac{\pi}{2}, \cfrac{\pi}{6}$$ in first quadrant.
    Hence, option 'B' is correct.
  • Question 3
    1 / -0
    The slope of the tangent to the curve $$\displaystyle y=\sin x$$ at point $$(0, 0)$$ is
    Solution
    Given $$y=\sin x$$
    $$\Rightarrow \cfrac{dy}{dx}=\cos x$$
    Thus, slope of tangent at $$(0,0)$$ is,
    $$m=\left (\cfrac{dy}{dx}\right )_{(0.0)}=\cos (0)=1$$
    Hence, option 'A' is correct.
  • Question 4
    1 / -0
    If tangent at a point of the curve $$y = f(x)$$ is perpendicular to $$2x - 3y = 5$$ then at that point $$\displaystyle \dfrac{dy}{dx}$$ equals
    Solution
    We know slope of tangent to the curve is $$\displaystyle \frac{dy}{dx}$$
    Now slope of line $$2x - 3y = 5$$ is $$\displaystyle \frac{2}{3}$$
    and tangent to $$y=f(x)$$ is perpendicular to this line.
    $$\displaystyle \therefore $$ $$\displaystyle \frac{dy}{dx}=-\frac{3}{2} $$
    Hence, option 'D' is correct.
  • Question 5
    1 / -0
    The inclination of the tangent w.r.t. $$x$$ - axis to the curve $$\displaystyle x^{2}+2y=8x-7$$ at the point $$x = 5$$ is
    Solution
    Given, $$\displaystyle x^{2}+2y=8x-7$$
    $$\Rightarrow 2y=8x-x^2-7$$
    $$\therefore 2\cfrac{dy}{dx}=8-2x\Rightarrow \cfrac{dy}{dx}=4-x$$
    Thus slope of tangent to the given curve at $$x=5$$ is, $$m=-1$$
    If $$'\theta '$$ is the inclination of the tangent w.r.t $$x-axis$$ then,
    $$\tan\theta=-1\Rightarrow \theta=\cfrac{3\pi}{4}$$
    Hence, option 'C' is correct.
  • Question 6
    1 / -0
    At what point the tangent to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ is perpendicular to the $$x$$ - axis
    Solution
    Let the point be $$P\displaystyle \left ( x_{1},y_{1} \right )$$
    Now $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$
    Differentiating w.r.t $$x$$
    $$\displaystyle \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}\times \frac{dy}{dx}=0 $$
    $$\displaystyle \frac{dy}{dx}=-\sqrt{\frac{y}{x}}$$
    Thus slope of tangent at P is $$=\displaystyle \left ( \frac{dy}{dx} \right )_{\left ( x_{1},y_{1} \right )}=-\sqrt{\frac{y_{1}}{x_{1}}}$$
    if tangent $$\displaystyle \perp $$ to x axis then $$\displaystyle \frac{dy}{dx}=\frac{1}{0} $$
    $$\displaystyle \therefore  x_1 = 0\Rightarrow  y_1 = a$$
    Therefore, required   point is  $$(0, a)$$
    Hence, option 'D' is correct.
  • Question 7
    1 / -0
    The line $$y = x + 1$$ is a tangent to the curve $$ y^2 = 4x$$ at the point.
    Solution
    We have $$y=x+1, y^2=4x$$
    Solving these, $$\Rightarrow (x+1)^2=4x\Rightarrow x^2-2x+1=0$$
    $$\Rightarrow (x-1)^2=0\Rightarrow x=1\therefore y  = (x+1)_{x=1}=2$$
    Thus required point of contact is $$(1,2)$$
  • Question 8
    1 / -0
    If a tangent to the curve $$\displaystyle y=6x-{ x }^{ 2 }$$ is parallel to the line $$\displaystyle 4x-2y-1=0$$, then the point of tangency on the curve is:
    Solution
    $$y=6x-x^2$$
    $$\Rightarrow y' =6-2x\ as\ tangent \ is\  parallel \  to \ line  4x-2y-1=0  \  $$ slope $$=2$$
    $$\Rightarrow 6-2x=2$$
    $$\Rightarrow x=2$$
    So $$y=6\cdot 2-2^2=8$$
    Hence the point of tangency is $$(2,8)$$
  • Question 9
    1 / -0
    The slope of the tangent to the curve $$y = \int_{0}^{x} \dfrac {dt}{1 + t^{3}}$$ at the point where $$x = 1$$ is
    Solution
    $$m=\dfrac {dy}{dx} = \dfrac {1}{1 + x^{3}}$$
    $$m = \left (\dfrac {dy}{dx}\right )_ {x = 1} = \dfrac {1}{1 + 1} = \dfrac {1}{2}$$
  • Question 10
    1 / -0
    The equation of the tangent to the curve $$y=4xe^x$$ at $$\left(-1, \displaystyle\frac{-4}{e}\right)$$ is
    Solution
    Given curve is $$y=4xe^x$$
    $$\displaystyle\frac{dy}{dx}=4e^x+4xe^x$$
    At $$\left(-1, -\displaystyle\frac{4}{e}\right)\left(\displaystyle\frac{dy}{dx}\right)_{(\displaystyle -1, -4/e)}=4e^{-1}+4(-1)e^{-1}$$
    $$\therefore$$ Equation of tangent is $$\left(y+\displaystyle\frac{4}{e}\right)=0(x+1)$$
    $$\Rightarrow y=-\displaystyle\frac{4}{e}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now