Self Studies

Tangents and its Equations Test 54

Result Self Studies

Tangents and its Equations Test 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $${r^2} = {a^2}\cos 2\theta$$, where $$x = r\cos \theta ,y = r\sin \theta $$, at the point $$\theta=\frac{\pi}{6}$$ is
  • Question 2
    1 / -0
    The line $$\dfrac{x}{a}+\dfrac{y}{b}=1$$ touches the curve $$y=be^{-x/a}$$ at the point.
    Solution

  • Question 3
    1 / -0
    If the tangent at any point on the curve $$x^{4} +y^{4}=a^{4}$$ cuts off intercepts $$p$$ and $$q$$ on the coordinate axes the value of $$p^{-4/3}+q^{-4/3}$$ is
    Solution

    Consider the given expression.

    $${{x}^{4}}+{{y}^{4}}={{a}^{4}}$$

     Let the point on the curve be $$M\left( {{x}_{0}},{{y}_{0}} \right)$$.

     Therefore,

    $$x_{0}^{4}+x_{0}^{4}={{a}^{4}}$$

     Differentiate the expression given in the question with respect to $$x$$.

    $$ {{x}^{4}}+{{y}^{4}}={{a}^{4}} $$

    $$ 4{{x}^{3}}+4{{y}^{3}}\dfrac{dy}{dx}=0 $$

    $$ \dfrac{dy}{dx}=-\dfrac{{{x}^{3}}}{{{y}^{3}}} $$

     So, at the point $$M$$, the slope is,

    $$\Rightarrow -\dfrac{x_{0}^{3}}{y_{0}^{3}}$$

     Therefore, equation of the tangent is,

    $$\begin{align}

    $$ y-{{y}_{0}}=-\dfrac{x_{0}^{3}}{y_{0}^{3}}\left( x-{{x}_{0}} \right) $$

    $$ yy_{0}^{3}-y_{0}^{4}=-x_{0}^{3}x+x_{0}^{4} $$

    \end{align}$$

     Let $$p$$ and $$q$$ be the $$x$$ and $$y$$ intercept, respectively. So, at $$x$$ intercept,

    $$ -y_{0}^{4}=-x_{0}^{3}p+x_{0}^{4} $$

    $$ x_{0}^{3}p=x_{0}^{4}+y_{0}^{4} $$

    $$ p=\dfrac{x_{0}^{4}+y_{0}^{4}}{x_{0}^{3}} $$

    $$ p=\dfrac{{{a}^{4}}}{x_{0}^{3}} $$

     Similarly,

    $$q=\dfrac{{{a}^{4}}}{y_{0}^{3}}$$

     Now, calculate the value of $${{p}^{-4/3}}+{{q}^{-4/3}}$$.

    $$ ={{\left( \dfrac{{{a}^{4}}}{x_{0}^{3}} \right)}^{-4/3}}+{{\left( \dfrac{{{a}^{4}}}{y_{0}^{3}} \right)}^{-4/3}} $$

    $$ ={{\left( \dfrac{x_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}}+{{\left( \dfrac{y_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}} $$

    $$ =\left( \dfrac{x_{0}^{4}}{{{a}^{16/3}}} \right)+\left( \dfrac{y_{0}^{4}}{{{a}^{16/3}}} \right) $$

    $$ =\dfrac{x_{0}^{4}+y_{0}^{4}}{{{a}^{16/3}}} $$

    $$ =\dfrac{{{a}^{4}}}{{{a}^{16/3}}} $$

    $$ ={{a}^{-4/3}} $$

     Hence, this is the required result.

  • Question 4
    1 / -0

    The abscissa of the point on the curve $$\sqrt {xy}  = a + x$$ , the tangent at which cuts off equal intercepts from the co-ordinate axes is (a >0)

    Solution
    Slope of normal $$= \pm1$$ because intercept are equal
     slope of target $$=\dfrac{-1}{\left(\dfrac{dy}{dh}\right)}=\pm 1$$
    $$\therefore \dfrac{dy}{dh}=\pm 1$$
    differentiate by $$xy=(a+x)^2$$ we get
    $$xy^1+y=2(a+x)$$
    $$\Rightarrow y \pm x=2(a+x)$$
    $$\Rightarrow \dfrac{(a+x)^2}{x}\pm x=2(a+x)$$
    $$\Rightarrow \pm x^2=(a+h)(h-a)$$
    $$\Rightarrow \pm x^2=h^2-a^2$$
    $$\Rightarrow 2x^2=a^2$$ or $$x=\pm \dfrac{a}{\sqrt 2}$$

  • Question 5
    1 / -0
    if $$m$$ is the slope of a tangent to the curve $$e^{y}=1+x^{2}$$, then  $$m$$ belongs to the interval
    Solution

  • Question 6
    1 / -0
    Find the slope of tangent of the curve$$x = a\,{\sin ^3}t,y = b\,\,{\cos ^3}t$$ at $$t = \frac{\pi }{2}$$
    Solution
    $$x=asin^3t $$
    $$dx=a3sin^2t(cost)dt$$…(1)
    $$y=bcos^3t$$
    $$dy=b3cos^2t(-sint)dt$$   ..(2)
    At $$t=\dfrac{\Pi}{2}$$
      $$ \dfrac{dx}{dt}=0$$  and hence $$ \dfrac{dy}{dx}=\text{not defined}$$
  • Question 7
    1 / -0
    A tangent drawn to the curve $$y = f\left( x \right)$$ at $$P\left( {x,y} \right)$$
    cuts the x and y axes at A and B, respectively, such that $$AP:PB = 1:3$$. If $$f\left( 1 \right) = 1$$ then the curve passes through $$\left( {k,\frac{1}{8}} \right)$$ where $$k$$ is
    Solution
    Equation of tangent at $$P(x,y)$$ is 

    $$Y - y = \dfrac{dy}{dt}(X-x)$$

    It meets x - axis at $$A$$

    $$A = \left(x-\dfrac{dx}{dy}y, 0\right)$$

    and y -axis at $$B$$

    $$B = (0, y - \dfrac{dy}{dt})$$

    And also given $$\dfrac{AP}{PB} = 1 : 3$$

    Using section formula

    $$\left[\dfrac{mx_1+m_2x_2}{m_1m+m_2}, \dfrac{m_1y_1+m_2y_2}{m_1+m_2}\right]$$

    $$\dfrac{3}{4} \left(x - \dfrac{dx}{dy} y\right)v = \dfrac{1}{4} \left(y - x \dfrac{dy}{dx}\right) = (x,y)$$

    $$\dfrac{3}{4} \left( x-y \dfrac{dx}{dy}\right) = x$$; $$\dfrac{1}{4} \left(y - x \dfrac{dy}{x} \right) = y$$ 

    $$3 \dfrac{dx}{x} + \dfrac{dy}{y} = 0$$

    $$\log(x^3y) =$$ const (on integrative) 

    Given $$f(1) = 1$$, so here $$cons \, t = 1$$

    $$x^3y = 1$$   (k, 1/8)

    $$k^3 = 8$$

    $$k = 2$$

  • Question 8
    1 / -0
    Equation of tangent to the circle $$x^{2}+ y^{2}-6x+4y-12=0$$ which are parallel to the line $$4x+3y+5=0$$ is ?
    Solution
    For the circle $$x²+y²-6x+4y-12=0$$,

    center $$C≡\left( \frac { -6 }{ -2 } ,\frac { 4 }{ -2 }  \right) =(3,-2)$$

    radius $$r=\sqrt { (9+4+12) } =5$$

    A tangent parallel to line $$4x+3y+5=0$$ has equation $$4x+3y+c=0\Longrightarrow (1)$$

    If seg $$CP$$ is perpendicular to this tgt,then

    $$CP=r$$

    $$\left| \frac { 4\left( 3 \right) +3\left( -2 \right) +c }{ \sqrt { { 4 }^{ 2 }+{ 3 }^{ 2 } }  }  \right| =5$$

    $$\left| c+6 \right| =25$$

    $$c+6=\pm 25$$

    $$c=-6\pm 25$$

    $$c=19,-31\Longrightarrow (2)$$

    From (1) and (2)

    $$4x+3y+19=0and4x+3y-31=0.$$
  • Question 9
    1 / -0
    The point on the curve $$y = b e^{\dfrac {-x}{a}}$$ at which the tangent drawn is $$\dfrac {x}{a} + \dfrac {y}{b} = 1$$ is
    Solution

  • Question 10
    1 / -0
    If $$V$$ is the set of points on the curve $$y^{3} - 3xy +2 = 0$$ where the tangent is vertical then $$V =$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now