Self Studies

Logarithm and Antilogarithm Test 11

Result Self Studies

Logarithm and Antilogarithm Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following real numbers is(are) non-positive?
    Solution
    From given,

    we have,

    $$\log _{0.3}\left(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}\right)$$

    $$=\log _{0.3}\left(2+\sqrt{5}\right)-\log _{0.3}\left(\sqrt{5}-2\right)$$

    $$=-2.39811$$
  • Question 2
    1 / -0
    $${ \left( \dfrac { 2 }{ 3 }  \right)  }^{ 0 }=?$$
    Solution
    Given $${ \left( \dfrac { 2 }{ 3 }  \right)  }^{ 0 }$$
    By using tha law of exponents i.e., $$\left(\dfrac{a}{b}\right)^0=1$$
    $$\therefore { \left( \dfrac { 2 }{ 3 }  \right)  }^{ 0 }=1$$
  • Question 3
    1 / -0
    If $$y$$ is any non-zero integer, then $$y^0$$ is equal to ....

    Solution
    Using the law of exponents, $$a^0 =1$$

    Therefore $$y^0=1$$
  • Question 4
    1 / -0
    The value of the logarithmic function $$\log_2 \log_2 \log_2 16$$ is equal to
    Solution
    Using, $$\log_a x^y = y\log_a x$$ and $$\log_a a = 1$$
    $$\log _{ 2 }{ \log _{ 2 }{ \log _{ 2 }{ 16 }  }  } \\
    =\log _{ 2 }{ \log _{ 2 }{ \log _{ 2 }{ { 2 }^{ 4 } }  }  } \\
    =\log _{ 2 }{ \log _{ 2 }{ 4 }  } \\
    =\log _{ 2 }{ \log _{ 2 }{ { 2 }^{ 2 } }  } \\
    =\log _{ 2 }{ 2 } \\ =1\\ 
    $$
  • Question 5
    1 / -0
    The value of $$\log_{15}225^{225}$$ is equal to
    Solution
    $$225\log _{15}{225}$$
    $$=225\log _{15}{{15}^{2}}$$ 
    $$=225\times 2\log _{15}{15} = 450$$
  • Question 6
    1 / -0
    If $$ \log_{10}4 = 0.6020$$, then the value of $$\log_{10}8$$ is equal to
    Solution
    $$\log_{10} 8 = \log_{10} (4 \times 2) = \log_{10} 4+ \log_{10} 2$$
    $$=0.6020+0.3010=0.9030$$
  • Question 7
    1 / -0
    If $$\log_{10}(x+5) = 1$$, then value of $$x$$ is equal to
    Solution

     $$\log_{10}(x+5) = 1$$

    $$ \mbox{In exponent form},$$

    $$ (x+5) = { 10 }^{ 1 }$$

    $$ \therefore  x = 10 - 5 = 5 $$
  • Question 8
    1 / -0
    Given log 6 and log 8, then the only logarithm that cannot be obtained without using the table is
    Solution

    Let $$\log { 6 } =x$$

    $$\Rightarrow \log { 2 } +\log { 3 } =x$$ ....... $$(i)$$

    Let $$\log { 8 } =y$$

    $$\Rightarrow 3\log { 2 } =y$$ 

    $$\Rightarrow \log 2=\dfrac{y}{3}$$ ...... $$(ii)$$

    $$\therefore x=\log { 3 } +\dfrac { y }{ 3 } $$ ...... From $$(i)$$ and $$(ii)$$

    $$\Rightarrow \log { 3 } =x-\dfrac { y }{ 3 } $$

    A.

    $$\log { 64 } =\log { { 2 }^{ 6 } }=6\log 2=6\dfrac{y}{3} $$

    B.

    $$\log { 21 } =\log { 3 } +\log {7} $$

    Thus, $$\log 21$$ cannot be found from given values as we need the value of $$\log { 7 } $$.

    C.

    $$\log \dfrac{8}{3}=\log 8-\log 3=3\log 2-\log 3$$

    D.

    $$\log 9=\log 3^{2}=2\log 3$$

    Hence, only $$\log 21$$ can't be obtained from given data.

  • Question 9
    1 / -0
    If $$\log (x + 1)+ \log (x - 1) = \log 3$$, then the value of $$x$$ will be
    Solution
    Given:
    $$\log(x+1) +\log(x-1) = \log3$$
    $$\implies \log (x+1)(x-1)=\log 3$$
    Using multiplication rule of logarithms,
    $$\log a+\log b = \log ab$$
    Thus, $$\log(x^2-1) = \log3$$
    $$\implies \Rightarrow x^2-1 = 3$$
    $$\implies \Rightarrow x=\pm2$$
    But $$x\neq-2 \quad \because x-1>0\Rightarrow x>1$$
    $$\therefore x = 2$$
    Hence, option C.
  • Question 10
    1 / -0
    The value of $$\log_{2\sqrt{3}}1728$$ is equal to
    Solution
    Let $$ \log _{ { 2\sqrt { 3 }  } }{ 1728 } = x$$
    $$\implies 1728 = \left( { 2\sqrt { 3 }  } \right) { ^{ x } }\\ \implies (1728 = { 2 }^{ 6 }\times { 3 }^{ 3 } = { 2 }^{ 6 }{ \sqrt { 3 }  }^{ 6 })\\ \therefore  { 2 }^{ 6 }{ (\sqrt { 3 })}^{ 6 } = { (2\sqrt { 3 } ) }^{ x }\\ \therefore x = 6\\ \\ $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now