Self Studies

Logarithm and Antilogarithm Test 14

Result Self Studies

Logarithm and Antilogarithm Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \log_{3} 27$$ is equal to
    Solution
    $$ \log _{ 3 }{ 27 } = \log _{ 3 }{ { 3 }^{ 3 } } \\ =3\log _{ 3 }{ 3 } \\ = 3$$
  • Question 2
    1 / -0
    If $$\displaystyle 2 \log y - \log x - 3 = 0$$ and $$x$$ = $$\dfrac {y^2}{m}$$, then the value of $$m$$ is equal to
    Solution
    Since, $$\displaystyle 2 \log y - \log x - 3 = 0$$

    $$\therefore \log y^2 - \log x = \log 1000$$        ($$\log a^b = b \log a$$)

    $$\Rightarrow \log\dfrac{y^2}{x} = \log 1000$$      ($$\log\dfrac{a}{b} = \log a - \log b$$)

    $$\Rightarrow \dfrac{y^2}{x} = 1000$$               

    $$\Rightarrow x = \dfrac{y^2}{1000}$$

    $$ \Rightarrow m = 1000$$
  • Question 3
    1 / -0
    If $$\displaystyle \log_{10} 8 = 0.90$$ and $$\displaystyle \log \sqrt {32}$$ = $$\cfrac{m}{4}$$, then the value of $$m$$ is equal to 
    Solution
    Goven, $$ \log_{10}8 = 0.9$$
    $$\Rightarrow  \log_{10}2^3 = 0.9$$    
    $$\Rightarrow 3\log_{10} = 0.9$$       (Using $$\log a^b = b \log a$$)
    $$\Rightarrow \log_{10}2 = 0.3$$
    Now, $$\log_{10}\sqrt{32} = \dfrac{5}{2}\log_{10}2 = 2.5\times 0.3 = 0.75= \dfrac{3}{4}$$
    $$\Rightarrow m=3$$.
  • Question 4
    1 / -0
    The value of $$\displaystyle \log_{2} 0.125$$ is equal to
    Solution
    $$ \log _{ 2 }{ 0.125 } = \log _{ 2 }{ { \dfrac { 1 }{ 8 }  } } \\ =\log _{ 2 }{ { 2 }^{ -3 } } \\ = -3$$
  • Question 5
    1 / -0
    The value of $$\log_{0.5}16$$ is equal to
    Solution
    Given, $$ \log _{ 0.5 }{ 16 } = x $$

    $$\implies 16 = {0.5 }^{ x }$$

    $$\implies { 2 }^{ 4 } = { 2 }^{ -x }$$

    $$\implies x = -4$$
  • Question 6
    1 / -0
    If $$\log_{16} 8$$ = $$\displaystyle \frac{m}{4}$$, then value of $$m$$ is equal to 
    Solution
    Since, $$\log _{16}{8}=\frac {m}{4}$$          ...(1)
    Let $$ \log _{ 16 }{ 8 } =x$$
    Convert in exponential form,
    $$ 8 = { 16 }^{ x }$$
    $${ 2 }^{ 3 } = { 2 }^{ 4x }$$
    $$ \therefore x = \displaystyle \frac { 3 }{ 4 } $$                ...(2)
    From (1) and (2),
    $$m=3$$
  • Question 7
    1 / -0
    If the value of $$(\log_{10} 2 )+ 1$$ is in the form of $$\log_{10}m$$, then $$m$$ is equal to 
    Solution
    $$ \log _{ 10 }{ 2 } +1 = \log _{ 10 }{ 2 } +\log _{ 10 }{ 10 } \\ \\ \\ =\log _{ 10 }{ (2\times 10 } )\\ = \log _{ 10 }{ 20 }  $$
  • Question 8
    1 / -0
    The value of $$ \log_{5} 0.2$$ is equal to
    Solution
    Let $$\log _{ 5 }{ 0.2 } = x$$
    $$ \therefore 0.2 = { 5 }^{ x } \Rightarrow \dfrac { 2 }{ 10 } =  { 5 }^{ x } $$ 
    $$\therefore \dfrac{1}{5} = {5}^{x} \Rightarrow 5^{-1} = 5^{x}$$
    $$ \therefore x = -1$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \log_{10}0.001 $$ is equal to
    Solution
    Consider, $$  \log _{ 10 }{ 0.001 } =x$$
    $$\implies  0.001 = { 10 }^{ x }$$
    $$\implies \dfrac { 1 }{ 1000 } = 10^x$$
    $$\implies { 10 }^{ -3 }= 10^x$$
    $$\implies x=-3  $$
  • Question 10
    1 / -0
    The value of $$\displaystyle \log_{5} 625$$ is equal to
    Solution
    $$ \log _{ 5 }{ 625 } =  \log _{ 5 }{ { 5 }^{ 4 } } \\ = 4\log _{ 5 }{ 5 } \\ = 4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now